Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

601.

Verify the property x × (y × z) = (x × y) × z of rational numbers by using x = 1, y = -½ and z = ¼.

Answer»

In the question is given to verify the property x × (y × z) = (x × y) × z

The arrangement of the given rational number is as per the rule of associative property for multiplication.

Then, 1 × (-½ × ¼) = (1 × -½) × ¼

LHS = 1 × (-½ × ¼)

= 1 × (-1/8)

= -1/8

RHS = (1 × -½) × ¼

= (-½) × ¼

= -1/8

By comparing LHS and RHS

LHS = RHS

∴ -1/8 = -1/8

Hence x × (y × z) = (x × y) × z

602.

Verify the property x × (y × z) = (x × y) × z of rational numbers by using x = -2/7, y = -5/6 and z = ¼

Answer»

In the question is given to verify the property x × (y × z) = (x × y) × z

The arrangement of the given rational number is as per the rule of associative property for multiplication.

Then, (-2/7) × (-5/6 × ¼) = ((-2/7) × (-5/6)) × ¼

LHS = (-2/7) × (-5/6 × ¼)

= (-2/7) × (-5/24)

= 10/168

RHS = ((-2/7) × (-5/6)) × ¼

= (10/42) × ¼

= 10/168

By comparing LHS and RHS

LHS = RHS

∴ 10/168 = 10/168

Hence x × (y × z) = (x × y) × z

603.

Find 0 ÷ (2/3)

Answer»

0 ÷ (2/3) = 0 × (3/2)

= 0/2

= 0

604.

Add the following rational numbers:(i) (-5/7) and (3/7)(ii) (-15/4) and (7/4)(iii) (-8/11) and (-4/11)(iv) (6/13) and (-9/13)

Answer»

(i) Given (-5/7) and (3/7)

= (-5/7) + (3/7)

Here denominators are same so add the numerator

= ((-5+3)/7)

= (-2/7)

(ii) Given (-15/4) and (7/4)

= (-15/4) + (7/4)

Here denominators are same so add the numerator

= ((-15 + 7)/4)

= (-8/4)

On simplifying

= -2

(iii) Given (-8/11) and (-4/11)

= (-8/11) + (-4/11)

Here denominators are same so add the numerator

= (-8 + (-4))/11

= (-12/11)

(iv) Given (6/13) and (-9/13)

= (6/13) + (-9/13)

Here denominators are same so add the numerator

= (6 + (-9))/13

= (-3/13)

605.

Arrange the numbers ¼, 13/16, 5/8 in the descending order.

Answer»

The LCM of the denominators 4, 16 and 8 is 16

∴ ¼ = [(1×4)/ (4×4)] = (4/16)

(13/16) = [(13×1)/ (16×1)] = (13/16)

(5/8) = [(5×2)/ (8×2)] = (10/16)

Now, 13 < 10 < 4

⇒ (13/16) > (10/16) > (4/16)

Hence, (13/16) > (5/8) > (¼)

Descending order 13/16, 5/8

606.

 Arrange the following rational numbers in descending order:(i) \(-2,\frac{-13}{6},\frac{8}{-3},\frac{1}{3}\) (ii) \(\frac{-3}{10},\frac{7}{-15},\frac{-11}{20},\frac{17}{-30}\) (iii) \(\frac{-5}{6},\frac{-7}{10},\frac{-13}{18},\frac{23}{-24}\) (iv) \(\frac{-10}{11},\frac{-19}{11},\frac{-23}{33},\frac{-39}{44}\)

Answer»

(i) \(-2 = \frac{-2}{1}\)

And,

\(\frac{8}{-3} = \frac{8\times-1}{-3\times-1} = \frac{-8}{3}\)

Since, the denominators of all the numbers are different therefore we will take LCM of the denominators. 

LCM of 1, 6and 3 = 6

\(\frac{-2}{1}= \frac{-2\times6}{1\times6} = \frac{-12}{6}\)

\(\frac{-13}{6}= \frac{-13\times1}{6\times1} = \frac{-13}{6}\)

\(\frac{-8}{3}= \frac{-8\times2}{3\times2} = \frac{-16}{6}\)

\(\frac{1}{3}= \frac{1\times2}{3\times2} = \frac{-2}{6}\)

Clearly,

2 > -12 > -13 > -16

Therefore,

\(\frac{2}{6}>\frac{-12}{6}>\frac{-13}{6}>\frac{-16}{6}\)

Hence,

\(\frac{1}{3}>\frac{-2}{1}>\frac{-13}{6}>\frac{-8}{3}\)

(ii) \(\frac{7}{-15}= \frac{7\times-1}{-30\times-1} = \frac{-17}{30}\)

And,

\(\frac{17}{-30}= \frac{17\times-1}{-30\times-1} = \frac{-17}{30}\)

Since, the denominators of all the numbers are different therefore we will take LCM of the denominators. 

LCM of 10, 15, 20 and 30 = 60

\(\frac{-3}{10}= \frac{-3\times6}{10\times6} = \frac{-18}{60}\)

\(\frac{-7}{15}= \frac{-7\times4}{15\times4} = \frac{-28}{60}\)

\(\frac{-11}{20}= \frac{-11\times3}{20\times3} = \frac{-33}{60}\)

\(\frac{-17}{30}= \frac{-17\times2}{30\times2} = \frac{-34}{60}\)

Clearly, 

-18>-28>-33>-34

Therefore,

\(\frac{-18}{60}>\frac{-28}{60}>\frac{-33}{60}>\frac{-34}{60}\)

Hence,

\(\frac{-3}{10}>\frac{-7}{15}>\frac{-11}{20}>\frac{-17}{30}\)

(iii) \(\frac{23}{-24} = \frac{23\times-1}{-24\times-1} = \frac{-23}{24}\)

Since, the denominators of all the numbers are different therefore we will take LCM of the denominators. 

LCM of 6, 12, 18 and 24 = 72

 \(\frac{-5}{6}= \frac{-5\times12}{6\times12} = \frac{-60}{72}\)

\(\frac{-7}{12}= \frac{-7\times6}{12\times6} = \frac{-42}{72}\)

\(\frac{-13}{18}= \frac{-13\times4}{18\times4} = \frac{-52}{72}\)

\(\frac{-23}{24}= \frac{-23\times3}{24\times3} = \frac{-69}{72}\)

Clearly, -42>-52>-60>-69 

Therefore,

\(\frac{-42}{72}>\frac{-52}{72}>\frac{-60}{72}>\frac{-69}{72}\)

Hence,

\(\frac{-7}{12}>\frac{-13}{18}>\frac{-5}{6}>\frac{-23}{24}\)

(iv) Since, the denominators of all the numbers are different therefore we will take LCM of the denominators. 

LCM of 11, 22, 33 and 44 = 132

  \(\frac{-10}{11}= \frac{-10\times12}{11\times12} = \frac{-120}{132}\)

\(\frac{-19}{22}= \frac{-19\times6}{22\times6} = \frac{-144}{132}\)

\(\frac{-23}{33}= \frac{-23\times4}{33\times4} = \frac{-92}{132}\)

\(\frac{-39}{44}= \frac{-39\times3}{44\times3} = \frac{-117}{132}\)

Clearly, -92>-114>-117>-120 

Therefore,

\(\frac{-92}{132}>\frac{-114}{132}>\frac{-117}{132}>\frac{-120}{132}\)

Hence,

\(\frac{-23}{33}>\frac{-19}{22}>\frac{-39}{44}>\frac{-10}{11}\)

607.

Write the following rational numbers in the descending order.(8/7), (-9/8), (-3/2), 0, (2/5)

Answer»

The LCM of the denominators 7, 8, 2 and 5 is 280

∴ 8/7 = [(8×40)/ (7×40)] = (320/280)

(-9/8) = [(-9×35)/ (8×35)] = (-315/280)

(-3/2) = [(-3×140)/ (2×140)] = (-420/280)

(2/5) = [(2×56)/ (56×56)] = (112/280)

Now, 320 > 112 > 0 > -315 > -420

Hence, ⇒ 8/7 > 2/5 > 0 > -9/8 > -3/2

Descending order 8/7, 2/5, 0, -9/8, -3/2

608.

State whether the statement given are True or False.Two rationals with different numerators can never be equal.

Answer»

False

Let’s take 5/6 (first rational) and 15/18 (second rational)

As given both the rationals have different numerators.

Since, 15 and 18 have 3 in common hence, 

⇒ 15/18 = 5/6 

⇒ 5/6 (second rational) = 5/6 (first rational )

Hence, two rational with different numerators can be equal.

609.

Which of the following statements are true:(i) The rational number (29/23) lies to the left of zero on the number line.(ii) The rational number (-12/-17) lies to the left of zero on the number line.(iii) The rational number (3/4) lies to the right of zero on the number line.(iv) The rational number (-12/-5) and (- 7/17) are on the opposite side of zero on the number line.(v) The rational number (-2/15) and (7/-31) are on the opposite side of zero on the number line.(vi) The rational number (- 3/-5) is on the right of (- 4/7) on the number line.

Answer»

(i) False

Explanation:

It lies to the right of zero because it is a positive number.

(ii) False

Explanation:

It lies to the right of zero because it is a positive number.

(iii) True

Explanation:

Always positive number lie on the right of zero

(iv) True

Explanation:

Because they are of opposite sign

(v) False

Explanation:

Because they both are of same sign

(vi) True

Explanation:

They both are of opposite signs and positive number is greater than the negative number. Thus, it is on the right of the negative number.

610.

Arrange the following rational numbers in ascending order:(i) (3/5), (-17/-30), (8/-15), (-7/10)(ii) (-4/9), (5/-12), (7/-18), (2/-3)

Answer»

(i) Given (3/5), (-17/-30), (8/-15), (-7/10)

The LCM of 5, 30, 15 and 10 is 30

Multiplying the numerators and denominators to get the denominator equal to the LCM i.e. 30

Consider (3/5)

Multiply both numerator and denominator by 6, then we get

(3/5) × (6/6) = (18/30) ….. (1)

Consider (8/-15)

Multiply both numerator and denominator by 2, then we get

(8/-15) × (2/2) = (16/-30) ….. (2)

Consider (-7/10)

Multiply both numerator and denominator by 3, then we get

(-7/10) × (3/3) = (-21/30) ….. (3)

In the above equation, denominators are same

Now on comparing the ascending order is:

(-7/10) < (8/-15) < (-17/30) < (3/5)

(ii) Given (-4/9), (5/-12), (7/-18), (2/-3)

The LCM of 9, 12, 18 and 3 is 36

Multiplying the numerators and denominators to get the denominator equal to the LCM i.e. 36

Consider (-4/9)

Multiply both numerator and denominator by 4, then we get

(-4/9) × (4/4) = (-16/36) ….. (1)

Consider (5/-12)

Multiply both numerator and denominator by 3, then we get

(5/-12) × (3/3) = (15/-36) ….. (2)

Consider (7/-18)

Multiply both numerator and denominator by 2, then we get

(7/-18) × (2/2) = (14/-36) ….. (3)

Consider (2/-3)

Multiply both numerator and denominator by 12, then we get

(2/-3) × (12/12) = (24/-36) ….. (4)

In the above equation, denominators are same

Now on comparing the ascending order is:

(2/-3) < ((-4/9) < (5/-12) < (7/-18)

611.

Which of the following are positive rational numbers?(i) (3/-5) (ii) (-11/15) (iii) (-5/-8) (iv) (37/53) (v) (0/3) (vi) 8

Answer»

(-5/-8), (37/53), 8 these are positive rational numbers. Because numerator and denominator are either both positive or both negative.

612.

Arrange the following rational numbers in descending order:(i) \(-2,\frac{-13}{6},\frac{8}{-3},\frac{1}{3}\)(ii) \(\frac{-3}{10},\frac{7}{-15},\frac{-11}{20},\frac{17}{-30}\)(iii) \(\frac{-5}{6},\frac{-7}{12},\frac{-13}{18},\frac{23}{-24}\)(iv) \(\frac{-10}{11},\frac{-19}{22},\frac{-23}{33},\frac{-39}{44}\)

Answer»

(i)

\(-2=\frac{-2}{1}\)

And,

\(\frac{8}{-3}=\frac{8\times-1}{-3\times-1}=\frac{-8}{3}\)

Since, the denominators of all the numbers are different therefore we will take LCM of the denominators. LCM of 1, 6 and 3 = 6

\(\frac{-2}{1}=\frac{-2\times6}{1\times6}=\frac{-12}{6}\)

\(\frac{-13}{6}=\frac{-13\times1}{6\times1}=\frac{-13}{6}\)

\(\frac{-8}{3}=\frac{-8\times2}{3\times2}=\frac{-16}{6}\)

\(\frac{1}{3}=\frac{1\times2}{3\times2}=\frac{2}{6}\)

Clearly, 2 > -12 > -13 > -16

Therefore,

\(\frac{2}{6}>\frac{-12}{6}>\frac{-13}{6}>\frac{-16}{6}\)

Hence,

\(\frac{1}{3}>\frac{-2}{1}>\frac{-13}{6}>\frac{-8}{6}\)

(ii)

\(\frac{7}{-15}=\frac{7\times-1}{-15\times-1}=\frac{-7}{15}\)

 And,

\(\frac{17}{-30}=\frac{17\times-1}{-30\times-1}=\frac{-17}{30}\)

Since, the denominators of all the numbers are different therefore we will take LCM of the denominators. LCM of 10, 15, 20 and 30 = 60

 \(\frac{-3}{10}=\frac{-3\times6}{10\times6}=\frac{-18}{60}\)

 \(\frac{-7}{15}=\frac{-7\times4}{15\times4}=\frac{-28}{60}\)

\(\frac{-11}{20}=\frac{-11\times3}{20\times3}=\frac{-33}{60}\)

\(\frac{-17}{30}=\frac{-17\times2}{30\times2}=\frac{-34}{60}\)

Clearly, -18>-28>-33>-34

 Therefore,

 \(\frac{-18}{60}>\frac{-28}{60}>\frac{-33}{60}>\frac{-34}{60}\)

Hence,

\(\frac{-3}{10}>\frac{-7}{15}>\frac{-11}{20}>\frac{-17}{30}\)

(iii)

\(\frac{23}{-24}=\frac{23\times-1}{-24\times-1}=\frac{-23}{24}\)

Since, the denominators of all the numbers are different therefore we will take LCM of the denominators. LCM of 6, 12, 18 and 24 = 72

 \(\frac{-5}{6}=\frac{-5\times12}{6\times12}=\frac{-60}{72}\)

\(\frac{-7}{12}=\frac{-7\times6}{12\times6}=\frac{-42}{72}\)

\(\frac{-13}{18}=\frac{-13\times4}{18\times4}=\frac{-52}{72}\)

\(\frac{-23}{24}=\frac{-23\times3}{24\times3}=\frac{-69}{72}\)

Clearly, -42>-52>-60>-69 

Therefore,

  \(\frac{-42}{72}>\frac{-52}{72}>\frac{-60}{72}>\frac{-69}{72}\)

Hence,

\(\frac{-7}{12}>\frac{-13}{18}>\frac{-5}{6}>\frac{-23}{24}\)

(iv)

Since, the denominators of all the numbers are different therefore we will take LCM of the denominators. LCM of 11, 22, 33 and 44 = 132

 \(\frac{-10}{11}=\frac{-10\times12}{11\times12}=\frac{-120}{132}\)

\(\frac{-19}{22}=\frac{-19\times6}{22\times6}=\frac{-114}{132}\)

\(\frac{-23}{33}=\frac{-23\times4}{33\times4}=\frac{-92}{132}\)

\(\frac{-39}{44}=\frac{-39\times3}{44\times3}=\frac{-117}{132}\)

Clearly, -92>-114>-117>-120

 Therefore,

  \(\frac{-92}{132}>\frac{-114}{132}>\frac{-117}{132}>\frac{-120}{132}\)

Hence,

\(\frac{-23}{33}>\frac{-19}{22}>\frac{-39}{44}>\frac{-10}{11}\)

613.

Write each of the following integers as a rational number. Write the numerator and the denominator in each case.(i) 5 (ii) -3 (iii) 1 (iv) 0 (v) -23

Answer»

(i) 5

Rational number= (5/1)

5 = Numerator

1 = Denominator

(ii) -3

Rational number= (-3/1)

-3 = Numerator

1= Denominator

(iii) 1

Rational number= (1/1)

1 = Numerator

1= Denominator

(iv) 0

Rational number= (0/1)

0 = Numerator

1= Denominator

(v) -23

Rational number= (-23/1)

-23= Numerator

1= Denominator

614.

Arrange the following rational numbers in descending order:(i) (7/8), (64/16), (39/-12), (5/-4), (140/28)(ii) (-3/10), (17/-30), (7/-15), (-11/20)

Answer»

(i) Given (7/8), (64/16), (39/-12), (5/-4), (140/28)

The LCM of 8, 16, 12, 4 and 28 is 336

Multiplying the numerators and denominators to get the denominator equal to the LCM i.e. 336

Consider (7/8)

Multiply both numerator and denominator by 42, then we get

(7/8) × (42/42) = (294/336) ….. (1)

Consider (64/16)

Multiply both numerator and denominator by 21, then we get

(64/16) × (21/21) = (1344/336) ….. (2)

Consider (39/-12)

Multiply both numerator and denominator by 28, then we get

(39/-12) × (28/28) = (-1008/336) ….. (3)

Consider (5/-4)

Multiply both numerator and denominator by 84, then we get

(5/-4) × (84/84) = (-420/336) ….. (4)

In the above equation, denominators are same

Now on comparing the descending order is:

(140/28) > (64/16) > (7/8) > (5/-4) > (36/-12)

(ii) Given (-3/10), (17/-30), (7/-15), (-11/20)

The LCM of 10, 30, 15 and 20 is 60

Multiplying the numerators and denominators to get the denominator equal to the LCM i.e. 60

Consider (-3/10)

Multiply both numerator and denominator by 6, then we get

(-3/10) × (6/6) = (-18/60) ….. (1)

Consider (17/-30)

Multiply both numerator and denominator by 2, then we get

(17/-30) × (2/2) = (34/-60) ….. (2)

Consider (7/-15)

Multiply both numerator and denominator by 4, then we get

(7/-15) × (4/4) = (28/-60) ….. (3)

In the above equation, denominators are same

Now on comparing the descending order is:

(-3/10) > (7/-15) > (-11/20) > (17/20)

615.

State whether the statement given are True or False.8 can be written as a rational number with any integer as denominator.

Answer»

False

8 can be written as a rational number with any integer as denominator, it is false because 8 can be written as a rational number with 1 as denominator i.e.8/1.

616.

51.36 + 87.35 = ………………… A) 131.71 B) 138.71 C) 108.71 D) 81.789

Answer»

Correct option is  B) 138.71

617.

State whether the statement are True or False.In any rational number p/q, denominator is always a nonzero integer.

Answer»

True.

In any rational number p/q,denominator is always a nonzero integer.

618.

In the standard form of a rational number, the common factor of numerator and denominator is always:(a) 0 (b) 1 (c) – 2 (d) 2

Answer»

(b) 1

A rational number is said to be in the standard form, if its denominator is a positive integer and the numerator and denominator have no common factor other than 1.

619.

Select those rational numbers which can be written as rational number with denominator 4:(7/8), (64/16), (36/-12), (-16/17), (5/-4), (140/28)

Answer»

Given rational numbers that can be written as a rational number with denominator 4 are:

(7/8) = (3.5/4) (On dividing both denominator and denominator by 2)

(64/16) = (16/4) (On dividing both denominator and numerator by 4)

(36/-12) = (-12/4) (On dividing both denominator and numerator by -3)

(5/- 4) = (- 5/4) (On multiplying both denominator and numerator by -1)

(140/28) = (20/4) (On dividing both numerator and denominator by 7)

620.

A cord of length \(71\frac{1}{2}\) m has been cut into 26 pieces of equal length. What is the length of each piece?

Answer»

Length of cord \(=71\frac{1}{2}\,m\)

No of pieces \(=26\)

Length of each piece = Length of cord \(\div\) No of pieces

\(=71\frac{1}{2}\,m\div26\)

\(=\frac{143}{2}\,m\div26\)

\(=\frac{143}{2}\,m\times\frac{1}{26}\)

\(=\frac{143}{2\times26}\,m\)

\(=\frac{143}{52}\,m\)

\(=\frac{11}{4}\,m\)

\(=2\frac{3}{4}\,m\)

Length of each piece \(=2\frac{3}{4}\,m\)

621.

Multiply:i) \(\frac{7}{11}\) by \(\frac{5}{4}\)ii) \(\frac{5}{7}\) by \(\frac{-3}{4}\)iii) \(\frac{-2}{9}\) by \(\frac{5}{11}\)iv) \(\frac{-3}{5}\) by \(\frac{4}{7}\)v) \(\frac{-15}{11}\) by 7

Answer»

i) 7/11 by 5/4
\(=\frac{7}{11}\times\frac{5}{4}\\=\frac{7\times5}{11\times4}\\=\frac{35}{44}\)

ii)  5/7 by -3/4
\(=\frac{5}{7}\times\frac{-3}{4}\\=\frac{(5\times-3)}{7\times4}\\=\frac{-15}{28}\)

iii)  -2/9 by 5/11
\(=\frac{-2}{9}\times\frac{5}{11}\\=\frac{-2\times5}{9\times11}\\=\frac{-10}{99}\)

iv)  -3/5 by -4
\(=\frac{-3}{5}\times\frac{-4}{7}\\=\frac{-3\times-4}{5\times7}\\=\frac{12}{35}\)

v) -15/11 by 7
\(=\frac{-15}{11}\times7\\=\frac{-15}{11}\times7\\=\frac{-15\times7}{11}\\=\frac{-105}{11}\)

622.

Multiply:(i) \(\frac{-5}{17}\) by \(\frac{51}{-60}\)(ii)  \(\frac{-6}{11}\) by \(\frac{-55}{36}\)(iii)  \(\frac{-8}{25}\) by \(\frac{-5}{16}\)(iv)  \(\frac{6}{7}\) by \(\frac{-49}{36}\)(v)  \(\frac{8}{-9}\) by \(\frac{-7}{-16}\)(vi)  \(\frac{8}{-9}\) by \(\frac{3}{64}\)

Answer»

(i) \(\frac{-5}{17}\times \frac{51}{-60}\)

\(\frac{-1\times 3}{1\times -12}\)

\(\frac{3}{12}\)

\(\frac{1}{4}\)

 (ii) \(\frac{-6}{11}\times \frac{-55}{36}\)

\(\frac{-1\times -5}{1\times 6}\)

\(\frac{5}{6}\)

 (iii) \(\frac{-8}{25}\times \frac{-5}{16}\)

\(\frac{-1\times -1}{5\times 2}\)

\(\frac{1}{10}\)

 (iv) \(\frac{6}{7}\times \frac{-49}{36}\)

\(\frac{1\times -7}{1\times 6}\)

\(\frac{-7}{6}\)

 (v) \(\frac{8}{-9}\times \frac{-7}{-16}\)

\(\frac{1\times -7}{-9\times -2}\)

\(\frac{-7}{18}\)

 (vi) \(\frac{8}{-9}\times \frac{3}{64}\)

\(\frac{1\times 1}{-3\times 8}\)

\(\frac{-1}{24}\)

623.

In the standard form of a rational number, the denominator is always a(a) 0 (b) negative integer (c) positive integer (d) 1

Answer»

(c) positive integer

A rational number is said to be in the standard form, if its denominator is a positive integer.

624.

Write (12/-17) as a rational number with positive denominator.

Answer»

(12/-17)

The denominator of rational number is negative then we multiply its numerator and denominator by -1 to get an equivalent rational number with positive denominator.

= [(12×-1)/ (-17/-1)]

= (-12/17)

625.

Which of the following numbers is in standard form?A. \(\frac{-12}{26}\) B. \(\frac{-49}{71}\)C. \(\frac{-9}{16}\)D. \(\frac{28}{-105}\)

Answer»

\(\frac{-12}{26}\) is not in standard form since 12 and 26 have a common divisor 2.

\(\frac{28}{-105}\) is not in standard form since its denominator is negative.

Therefore,

only \(\frac{-49}{71}\) and \(\frac{-9}{16}\) are in standard forms as their numerator and denominator have no common divisor and their denominators are positive.

626.

Use the distributivity of multiplication of rational numbers over their addition to simplify:i) \(\frac{3}{5}\times\frac{35}{24}+\frac{10}{1}\)ii) \(\frac{2}{7}\times\frac{7}{16}-\frac{21}{4}\)

Answer»

i)  3/5 × 35/24 + 3/5 × 10

 = 1/1 × 7/8 + 6/1

= 7/8 + 6 = (7×1 + 6×8)/8

= (7+48)/8

= 55/8

ii) 2/7 × 7/16 – 2/7 × 21/4

1/1 × 1/8 – 1/1 × 3/2

= 1/8 – 3/2

= 1/8 – 3/2 = (1×1 – 3×4)/8

= (1 – 12)/8

= -11/8

627.

Multiply:(i) \(\frac{7}{11}\) by \(\frac{5}{4}\)(ii)  \(\frac{5}{7}\) by \(\frac{-3}{4}\)(iii)  \(\frac{-2}{9}\) by \(\frac{5}{11}\)(iv)  \(\frac{-3}{17}\) by \(\frac{-5}{-4}\)(v)  \(\frac{9}{-7}\) by \(\frac{36}{11}\)(vi)  \(\frac{-11}{13}\) by \(\frac{-21}{7}\)(vii)  \(\frac{-3}{5}\) by \(\frac{-4}{7}\)(viii)  \(\frac{-15}{11}\) by 7

Answer»

(i) \(\frac{7}{11}\times \frac{5}{4}\)

\(\frac{7\times 5}{11\times 4}\)

\(\frac{35}{44}\)

 (ii) \(\frac{5}{7}\times \frac{-3}{4}\)

\(\frac{5\times -3}{7\times 4}\)

\(\frac{-15}{28}\)

 (iii) \(\frac{-2}{9}\times \frac{5}{11}\)

\(\frac{-2\times 5}{9\times 11}\)

\(\frac{-10}{99}\)

 (iv) \(\frac{-3}{17}\times \frac{-5}{-4}\)

\(\frac{-3\times -5}{17\times 4}\)

\(\frac{15}{68}\)

 (v) \(\frac{9}{-7}\times \frac{36}{-11}\)

\(\frac{9\times 36}{-7\times -11}\)

\(\frac{324}{77}\)

 (vi) \(\frac{-11}{13}\times \frac{-21}{7}\)

\(\frac{-11\times -21}{13\times 7}\)

\(\frac{231}{91}\)

\(\frac{33}{13}\)

 (vii) \(\frac{-3}{5}\times \frac{-4}{7}\)

\(\frac{-3\times -4}{5\times 7}\)

\(\frac{12}{35}\)

 (viii) \(\frac{15}{11}\times 7\)

\(\frac{-15\times 7}{11}\)

\(\frac{-105}{11}\)

628.

Simplify:(i) \(\frac{-3}{2}+\frac{5}{4}-\frac{7}{4}\)(ii) \(\frac{5}{3}-\frac{7}{6}+\frac{-2}{3}\)(iii) \(\frac{5}{4}-\frac{7}{6}-\frac{-2}{3}\)(iv) \(\frac{-2}{5}-\frac{-3}{10}-\frac{-4}{7}\)(v) \(\frac{5}{6}+\frac{-2}{5}-\frac{-2}{15}\)(vi) \(\frac{3}{8}-\frac{-2}{9}+\frac{-5}{36}\)

Answer»

(i) We have,

\(\frac{-3}{2}+\frac{5}{4}-\frac{7}{4}\) = \(\frac{-3\times 2+5\times 1-7\times 1}{4}\) (L.C.M of 2, 4 and 4 is 4)

\(\frac{-6+5-7}{4}\)

\(\frac{-13+5}{4}\)

\(\frac{-8}{4}\)

= -2

(ii) We have,

 \(\frac{5}{3}-\frac{7}{6}+\frac{2}{3}\) = \(\frac{5\times 2-7\times 1-2\times 2}{6}\) (L.C.M of 3, 6 and 3 is 6)

 = \(\frac{10-7-4}{6}\)

\(\frac{-1}{6}\)

(iii) We have,

 \(\frac{5}{4}-\frac{7}{6}+\frac{2}{3}\) = \(\frac{5\times 6-7\times 4+2\times 8}{24}\) (L.C.M of 4, 6 and 3 is 24)

 = \(\frac{30-28+16}{24}\)

\(\frac{2+16}{24}\)

\(\frac{18}{24}\)

 = \(\frac{3}{4}\)

(iv) We have,

 \(\frac{-2}{5}+\frac{3}{10}+\frac{4}{7}\) = \(\frac{-2\times 14+3\times 7+4\times 10}{70}\) (L.C.M of 5, 10 and 7 is 70)

  = \(\frac{-28+21+40}{70}\)

\(\frac{-28+61}{70}\)

\(\frac{33}{70}\)

(v) We have,

 \(\frac{5}{6}-\frac{2}{5}+\frac{2}{15}\) = \(\frac{5\times 5-2\times 6+2\times 2}{30}\) (L.C.M of 6, 5 and 15 is 30)

 = \(\frac{25-12+4}{30}\)

\(\frac{13+4}{30}\)

 = \(\frac{17}{30}\)

 (vi) We have,

 \(\frac{3}{8}+\frac{2}{9}-\frac{5}{36}\) = \(\frac{3\times 9+2\times 8-5\times 2}{72}\) (L.C.M of 8, 9 and 36 is 72)

 = \(\frac{27+16-10}{72}\)

\(\frac{43-10}{72}\)

\(\frac{33}{72}\)

 = \(\frac{11}{24}\)

629.

Write (-8/-19) as a rational number with positive denominator.

Answer»

(-8/-19)

The denominator of rational number is negative then we multiply its numerator and denominator by -1 to get an equivalent rational number with positive denominator.

= [(-8×-1)/ (-19/-1)]

= (8/1)

630.

The sum of two rational numbers is \(-3.\) If one of them is \(\frac{-10}{3}\) then the other one isA. \(\frac{-13}{3}\)B. \(\frac{-19}{3}\)C. \(\frac{1}{3}\)D. \(\frac{13}{3}\)

Answer»

Let the other number be x.

Then,

\(\frac{-10}{3}+\text{x}=\frac{-3}{1}\)

\(\Rightarrow\) \(\text{x}=\frac{-3}{1}-\frac{-10}{3}\)

\(\Rightarrow\) \(\text{x}=\frac{-3\times3-(-10)\times1}{3}\)

\(\Rightarrow\) \(\text{x}=\frac{-9+10}{3}\)

\(\Rightarrow\) \(\text{x}=\frac{1}{3}\)

631.

Which of the following rational numbers is positive?(a) (-8/7) (b) (19/-13) (c) (-3/-4) (d) (-21/13)

Answer»

(c) (-3/-4)

When the numerator and denominator both are positive integers or both are negative integers, it is a positive rational number.

632.

 Simplify each of the following and write as a rational number of the form \(\frac{p}{q}\):i) \(\frac{3}{4}+\frac{5}{6}+\frac{-7}{8}\)ii) \(\frac{2}{3}+\frac{-5}{6}+\frac{-7}{9}\)iii) \(\frac{-11}{2}+\frac{7}{6}+\frac{-5}{8}\)iv) \(\frac{5}{3}+\frac{3}{-2}+\frac{-7}{3}+3\)

Answer»

i) 

\(\frac{3}{4}+\frac{5}{6}-\frac{7}{8}\\\frac{((3\times6)+(5\times4)-(7\times3))}{24}\\=\frac{(18+20-21)}{24}\\=\frac{(38-21)}{24}\\=\frac{17}{24}\)

ii) 

\(\frac{2}{3}+\frac{-5}{6}+\frac{-7}{9}\\=\frac{((2\times3)+(-5\times3)+(-7\times2))}{18}\\=\frac{(12-15-14)}{18}\\=\frac{-17}{18}\)

iii) 

\(\frac{-11}{2}+\frac{7}{6}+\frac{-5}{8}\\=\frac{((-11\times12)+(7\times4)+(-5\times3))}{24}\\=\frac{(-132+28-15)}{24}\\=\frac{-119}{24}\)

iv) 

\(\frac{5}{3}+\frac{3}{-2}+\frac{-7}{3}+3\\=\frac{((5\times2)+(-3\times2)+(-7\times2)+(3\times6))}{6}\\=\frac{(10-9-14+18)}{6}\\=\frac{5}{6}\)

633.

Use the distributivity of multiplication of rational numbers over addition to simplify ¾ × [(8/9) – 40].

Answer»

We know that the distributivity of multiplication of rational numbers over subtraction, a × (b – c) = a × b – a × c

Where, a = -2/7, b = 7/16, c = 21/4

Then, (¾) × [(8/9) – (40)] = ((¾) × (8/9)) – ((¾) × (40))

= ((1/1) × (2/3)) – ((3/1) × (10))

= (2/3) – (30)

= (2 – 90)/3

= -88/3

634.

Find a Pythagorean triplet whose (i) largest member is 65 (ii) smallest member is 10

Answer»

(i) Largest number is 65

Given largest number is 65.

We know that 2m, m2 – 1, m2 + 1 form a

Pythagorean triplet.

let m2 + 1 = 65

m2 = 65 – 1

m2 = 64

m2 = 8 × 8

m = 8

∴ 2m = 2 × 8 = 16

m2 – 1 = 64 – 1 = 63

∴ The required Pythagorean triplet is (16, 63, 65)

(ii) Smallest number is 10

We know that (2m, m2 – 1, m2 + 1) form a

Pythagorean triplet.

Given smallest number is 10

let 2m = 10

m = 102

m = 5

m2 + 1 = 52 + 1 = 25 + 1 = 26

m2 – 1 = 52 – 1 = 25 – 1 = 24

∴ The required Pythagorean triplet is (10, 24, 26)

635.

Consider any natural number m &gt; 1.We find that (2m, m2 – 1, m2 + 1) will form a Pythagorean triplet. (A little algebra can help you to verify this!). With this formula, generate a few Pythagorean triplets.

Answer»

For any natural number m, we have 2m, m2 – 1, m2 + 1 is a Pythagorean triplet.

(i) Consider 2m = 16 ⇒ m = 8

m2 – 1 = 64 – 1 = 63
m2 + 1 = 64 + 1 = 65

So Pythagorean triplet is 16, 63, 65.

(ii) Consider 2m = 18 ⇒ m = 9

m2 – 1 = 81 – 1 = 80
m2 + 1 = 81 + 1 = 82

So Pythagorean triplet is 18, 80, 82.

636.

If 2m-1 + 2m+1 = 640, then find ‘m’

Answer»

Given 2m-1 + 2m+1 = 640

2m-1 + 2m+1 = 128 + 512 [consecutive powers of 2]

2m-1 + 2m+1 = 27+ 29 [powers of 2: 2, 4, 8, 16, 32, 64, 128, 256, 512, …..]

m – 1 = 7

m = 7 + 1

m = 8

637.

Give the answer in scientific notation:A human heart beats at an average of 80 beats per minute. How many times does it beat in(i) an hour?(ii) a day?(iii) a year?(iv) 100 years?

Answer»

Heart beat per minute = 80 beats

(i) an hour One hour = 60 minutes

Heart beat in an hour = 60 x 80 = 4800 = 4.8 x 10

(ii) In a day

One day = 24 hours = 24 x 60 minutes

∴ Heart beat in one day = 24 x 60 x 80 = 24 x 4800 = 115200 = 1.152 x 105

(iii) a year

One year = 365 days = 365 x 24 hours = 365 x 24 x 60 minutes

∴ Heart beats in a year = 365 x 24 x 60 x 80 = 42048000 = 4.2048 x 107

(iv) 100 years

Heart beats in one year = 4.2048 x 107

Heart beats in 100 years = 4.2048 x 107 x 100 = 4.2048 x 107 x 102

= 4.2048 x 109

638.

Consider the following square numbers:(i) 441(ii) 225(iii) 289(iv) 1089.Express each of them as the sum of two consecutive positive integers.

Answer»

(i) 441 = 220 + 221

(ii) 225 = 112 + 113

(iii) 289 = 144 + 145

(iv) 1089 = 544 + 545

639.

225 square shaped mosaic tiles, each of area 1 square decimetre exactly cover a square shaped verandah. How long is each side of the square shaped verandah?

Answer»

Area of one tile = 1 sq. decimeter

Area of 225 tiles = 225 sq.decimeter

225 square tiles exactly covers the square shaped verandah.

∴ Area of 225 tiles = Area of the verandah

Area of the verandah = 225 sq.decimeter

side x side = 15 x 15 sq.decimeter

side = 15 decimeters

Length of each side of verandah = 15 decimeters.

640.

If 1/4 of a ragi adai weighs 120 grams, what will be the weight of 2/3 of the same ragi adai?

Answer»

Let the weight of 1 ragi adai = x grams given 1/4 of x = 120 gm

1/4 × x = 120

x = 120 × 4

x = 480 gm

∴ 2/3 of the adai

= 2/3 × 480 gm = 2 × 160 gm = 320 gm

2/3 of the weight of adai = 320 gm

641.

Rita had Rs. 300. She spent \(\frac{1}{3}\) of her money on notebooks and \(\frac{1}{4}\) of the remainder on stationary items. How much money is left with her?

Answer»

Total money = Rs 300

Fraction spent on notebooks \(=\frac{1}{3}\)

Amount spent on notebooks \(=\frac{1}{3}\times300=Rs\,100\)

Amount left = Rs 300 – Rs 100 = 200

Fraction spent on stationary \(=\frac{1}{4}\)

Amount spent on stationary \(=\frac{1}{2}\times200=Rs\,50\)

Money left = Rs 300 – Rs 150 \(=Rs \,150\)

642.

If 3/4 of a box of apples weighs 3 kg and 225 gm, how much does a full box of apples weigh?

Answer»

Let the total weight of a box of apple = x kg.

Weight of 3/4 of a box apples = 3 kg 225 gm. = 3.225 kg

34 × x = 3225

x = 3.225 × 43 kg = 1.075 × 4 kg 

= 4.3 kg = 4 kg 300 gm

Weight of the box of apples = 4 kg 300 gm.

643.

Which among 256, 576, 960, 1025, 4096 are perfect square numbers?(Hint: Try to extend the table of squares already seen).

Answer»

256 = 162

576 = 242

4096 = 642

∴ 256, 576 and 4096 are perfect squares

644.

Study the given numbers and justify why each of them obviously cannot be a perfect square.(i) 1000(ii) 34567(iii) 408

Answer»

We know that the numbers end with odd number of zeros, 7 and 8 not perfect squares.

∴ 1000, 34567 and 408 cannot be perfect squares.

645.

Match Section A to section B.Section ASection B1. Rational number between 0 and 1(a) – 12. Additive inverse of rational number 1(b) undefined3. Multiplicative inverse of rational number 0(c) infinite4. How many rational number between two rational number(d) 1/2

Answer»

1. (d)
2. (a)
3. (b)
4. (c)

646.

Every natural number is a rational number.

Answer»

True

Every natural number is a rational number.

647.

Define rational numbers.

Answer»

Rational number is the quotient of two integers such that the denominator is a nonzero inter, i.e. Rational number =p/q , where p and q are integers and q ≠ 0.

648.

What is the multiplicative identity for rational numbers?

Answer»

1 is the multiplicative identity for rational numbers.

649.

Find a rational number between 2/3 and 3/4 .

Answer»

The given rational numbers are 2/3 and 3/4

\(\frac23\,\times\,\frac44=\frac8{12}\)\(\frac34\,\times\,\frac33=\frac9{12}\)

The rational numbers between 8/12 , 9/12 is

\(\cfrac{(\cfrac{8}{12}\,+\,\cfrac{9}{12})}{2} = \cfrac{\cfrac{17}{12}}{2}=\frac{17}{24}\)

(∵ the rational number between a, b is (a+b) / 2)

∴ the rational number between 2/3 and 3/4 is 17/24

650.

Find any five rational numbers less than 2 .

Answer»

Five rational numbers less than two are:

0, \(\frac{1}{5},\) \(\frac{2}{5},\) \(\frac{3}{5},\) \(\frac{4}{5},\)