Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

501.

-2/3 ÷ 2/3 = ..............A) 10 B) -1 C) 1 D) 0

Answer»

Correct option is  B) -1

502.

The product of two numbers is -20/9 and one of the numbers is 4 then the other number is ………………… A) -1/9B) 9/5C) 5/9D) /5/9

Answer»

Correct option is (D) -5/9

Let the other numbr be x.

Then \(x\times4=-\frac{20}9\)

\(\Rightarrow\) \(x=\frac{-20}{9\times4}\) \(=\frac{-5}{9}.\)

Correct option is  D) -5/9

503.

(-1/2 ) + ………………. = 0 A) 1/2B) 0 C) – (1/2)D) 2

Answer»

Correct option is  A) 1/2

504.

Write the numbers whose multiplicative inverses are the numbers themselves. 

Answer»

The number T is multiplicative inverse of itself. 

∵ 1 × \(\frac11\) = 1 

 ⇒ 1 × 1 = 1 

∴ The multiplicative inverse of 1 is 1.

505.

Which of the following is a multiplicative identity element ? A) 0B) 1 C) 2 D) -1

Answer»

Correct option is   B) 1

506.

Which of the following is a multiplicative inverse of -3/4 ? A) 1 B) 3/4C) 4/3D) -4/3

Answer»

Correct option is (D) -4/3

Let x be the multiplicative inverse of \(\frac{-3}{4}.\)

Then \(x\times\frac{-3}{4}=1\)

\(\Rightarrow\) \(x=\frac1{\frac{-3}4}=\frac{-4}3.\)

Correct option is  D) -4/3

507.

The product of multiplicative inverses of -9/2 and 5/18 is? A) 5/4B) -(5/4)C) 4/5D) -(4/5)

Answer»

Correct option is (D) -(4/5)

Multiplicative inverse of \(\frac{-9}{2}\) is \(\frac1{\frac{-9}{2}}\) \(=\frac{-2}{9}.\)

and multiplicative inverse of \(\frac{5}{18}\) is \(\frac1{\frac5{18}}=\frac{18}5.\)

\(\therefore\) Product of multiplicative inverses of \(\frac{-9}{2}\) and \(\frac{5}{18}\)

\(=\frac{-2}{9}\times\frac{18}5=\frac{-2\times2}5=\frac{-4}5.\)

Correct option is D) -(4/5)

508.

The multiplicative inverse of 1 is …………………….. A) 7 B) 3 C) 1 D) 10

Answer»

Correct option is  C) 1

509.

The multiplicative inverse of………………… \(\frac{-2}{7}\) x \(\frac{-17}{15}\)   is ...........................A \(\frac{105}{34 }\)B) \(\frac{15}{34 }\)C) \(\frac{115}{27 }\)D) \(\frac{105}{3 }\)

Answer»

Correct option is (A) 105/34

\(\frac{-2}{7}\times \frac{-17}{15}\) \(=\frac{-2\times-17}{7\times15}\) \(=\frac{34}{105}\)

\(\therefore\) Multiplicative inverse of \(\frac{-2}{7}\times \frac{-17}{15}\) is \(\cfrac1{\frac{34}{105}}\) \(=\frac{105}{34}.\)

Correct option is   A) \(\frac{105}{34 }\)

510.

3/5 ÷ 1/3 = ..................... A) 9 B) 1/3 C) 1/5D) 9/5

Answer»

Correct option is (D) 9/5

\(\frac{3}{5}\div\frac{1}{3}\) \(=\frac{3}{5}\times\frac31=\frac{3\times3}{5\times1}=\frac95.\)

Correct option is  D) 9/5 

511.

Equivalent fraction to 3/5 is …………………. A) 12/20B) 2/20C) 3/9D) 1/16

Answer»

Correct option is (A) 12/20

Equivalent number to \(\frac{3}{5}\) is \(\frac{3}{5}\times\frac44=\frac{3\times4}{5\times4}\) \(=\frac{12}{20}.\)

Correct option is  A) 12/20 

512.

1 - 1/2 - 1/2 - 1/2 = ................A) -1/2B) 1/2C) -1 D) 10

Answer»

Correct option is (A) -1/2

\(1-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}\) \(=\frac{1}{2}-\frac{1}{2}-\frac{1}{2}\) \(=0-\frac{1}{2}=-\frac{1}{2}.\)

Correct option is  A) -1/2 

513.

-4/9 = x/-27 then x = ……………….A) 13 B) 16C) 10 D) 12

Answer»

Correct option is (D) 12

\(x=\frac{-4}{9}\times-27=-4\times-3=12.\)

Correct option is  D) 12

514.

\(\frac{11}{2}\) x \(\frac{3}{10}\) = ............A) \(\frac{9}{10}\)B) \(\frac{3}{20}\) C) \(\frac{30}{20}\)D) \(\frac{33}{20}\)

Answer»

Correct option is (D)  33/20

\(\frac{11}{2}\times\frac{3}{10}\) = \(\frac{11\times3}{2\times10}=\frac{33}{20}.\)

Correct option is    D) \(\frac{33}{20}\)

option d) 33/20
515.

\(\frac{-2}{5} (\frac{-7}{10}\, + \frac{1}{6})\) = ....................-2/5 (-7/10 + 1/6) = ......................A) \(\frac{-11}{75}\)B) \(\frac{-16}{75}\)C) \(\frac{-14}{75}\)D) \(\frac{-15}{75}\)

Answer»

Correct option is (B)  16/75

\(\frac{-2}{5}(\frac{-7}{10}+\frac{1}{6})\) \(=\frac{-2}{5}(\frac{-7\times3+1\times5}{30})\) \(=\frac{-2}{5}\times\frac{-21+5}{30}\) \(=\frac{-2}{5}\times\frac{-16}{30}\) \(=\frac{-1\times-16}{5\times15}=\frac{16}{75}.\)

Correct option is   B) \(\frac{-16}{75}\)

516.

Krishna read 1/3 of a book in 1 hour. Then how much he will read in 3\(\frac13\) hrs? A) 16/15B) 6/11C) 5/13D) 1/2

Answer»

Correct option is (A) 10/9

\(\because\) Krishna read in 1 hour = \(\frac{1}{3}\) part of a book

\(\therefore\) Krishna read in \(3\frac{1}{3}\) hours = \(3\frac{1}{3}\) \(\times\) \(\frac{1}{3}\) part of that book

\(\frac{3\times3+1}{3}\) \(\times\) \(\frac{1}{3}\)

\(\frac{10}{3}\) \(\times\) \(\frac{1}{3}\) = \(\frac{10}9\) part of the book.

Correct option is  A) 16/15

517.

( 3/4) ÷ 0 = ………………….A) 0 B) -3 C) -4 D) Not defined

Answer»

D) Not defined

518.

Kishore bought 5\(\frac34\) kg apples and 4\(\frac12\) kg oranges then find the total weight in kgs. A) 3 \(\frac13\) kg B) 10\(\frac14\) kg C) 7\(\frac12\) kg D) 9\(\frac14\)kg

Answer»

Correct option is (B) \(10\frac{1}{4}\) kg

Total weight = \(5\frac{3}{4}\) + \(4\frac{1}{2}\) \(=\frac{5\times4+3}4+\frac{4\times2+1}2\)

\(=\frac{23}4+\frac92\) \(=\frac{23+9\times2}4=\frac{23+18}4\)

\(=\frac{41}4=\frac{40+1}4\) \(=10+\frac{1}{4}\)

\(10\frac{1}{4}\) kg.

Correct option is  B) 10\(\frac14\) kg 

519.

\(\frac{8}{-5}\, + \, \frac{-5}{-6}\) = ......................8/-5 + -5/-6 = ....................A) \(\frac{-23}{30}\)B) \(\frac{3}{23}\)C) \(\frac{-1}{30}\)D) \(\frac{1}{16}\)

Answer»

Correct option is (A)  −23/30

\(\frac{8}{-5}+\frac{-5}{-6}\) \(=\frac{-8}{5}+\frac{5}{6}\) \(=\frac{-8\times6+5\times5}{30}\) \(=\frac{-48+25}{30}\) \(=\frac{-23}{30}.\)

Correct option is   A) \(\frac{-23}{30}\)

520.

Identify the bigger one among the following:-4/9 , -5/12 , -7/18 , -2/3A) -7/18B) -5/12C) -2/3D) -4/9

Answer»

Correct option is (A) -7/18

LCM of 9, 12, 18 and 3 is 36.

So, we have to find equivalent numbers to given rational numbers whose denominator is 36.

So, we can compare between these numbers.

\(\frac{-4}{9}=\frac{-4}{9}\times\frac44=\frac{-4\times4}{9\times4}=\frac{-16}{36},\)

\(\frac{-5}{12}=\frac{-5}{12}\times\frac33=\frac{-5\times3}{12\times3}=\frac{-15}{36},\)

\(\frac{-7}{18}=\frac{-7}{18}\times\frac22=\frac{-7\times2}{18\times2}=\frac{-14}{36}\) and

\(\frac{-2}3=\frac{-2}3\times\frac{12}{12}=\frac{-2\times12}{3\times12}=\frac{-24}{36}.\)

Since, -24 < -16 < -15 < -14

\(\Rightarrow\) \(\frac{-24}{36}<\frac{-16}{36}<\frac{-15}{36}<\frac{-14}{36}\)

\(\Rightarrow\) \(\frac{-2}{3}<\frac{-4}{9}<\frac{-5}{12}<\frac{-7}{18}.\)

Thus, biggest number among all given rational numbers is \(\frac{-7}{18}.\)

Correct option is  A) -7/18

521.

Subtract: (i) \(\frac{3}{4}\) from \(\frac{1}{3}\)(ii) \(\frac{-5}{6}\) from \(\frac{1}{3}\) (iii) \(\frac{-8}{9}\) from \(\frac{-3}{5}\)(iv) \(\frac{-9}{7}\) from -1

Answer»

(i)

Since the denominators of both the numbers are different 

therefore, we will take their LCM 0f 3 and 4 = 12

\(\frac{3}{4}= \frac{3\times3}{4\times3}=\frac{9}{12}\)

And,

\(\frac{1}{3}= \frac{1\times4}{3\times4}=\frac{4}{12}\)

Therefore,

\(\frac{1}{3}-\frac{3}{4}\)

\(\frac{4}{12}-\frac{9}{12}\)

\(\frac{4-9}{12}\)

\(\frac{-5}{12}\)

(ii)

Since the denominators of both the numbers are different 

therefore, we will take their LCM 0f 6 and 3 = 6

\(\frac{-5}{6}= \frac{-5\times1}{6\times1}=\frac{-5}{6}\)

And,

\(\frac{1}{3}= \frac{1\times2}{3\times2}=\frac{2}{6}\)

Therefore,

\(\frac{1}{3}-(\frac{-5}{6})\)

\(\frac{2}{6}-(\frac{-5}{6})\)

\(\frac{2-(-5)}{6}\)

\(\frac{2+5}{6}\)

\(\frac{7}{6}\)

(iii)

Since the denominators of both the numbers are different 

therefore, we will take their LCM 0f 9 and 5 = 45

\(\frac{-8}{9}= \frac{-8\times5}{9\times5}=\frac{-40}{45}\)

And,

\(\frac{-3}{5}= \frac{-3\times9}{5\times9}=\frac{-27}{45}\)

Therefore,

\(\frac{-3}{5}-(\frac{-8}{9})\)

\(\frac{-27}{45}-(\frac{-40}{45})\) 

\(\frac{-27-(-40)}{45}\) 

\(\frac{-27+40}{45}\)

\(\frac{13}{45}\)

(iv)

We can write, -1 = \(\frac{-1}{1}\)

Since the denominators of both the numbers are different 

therefore, we will take their LCM 0f 1 and 7 =7

\(\frac{-1}{1}= \frac{-1\times7}{1\times7}=\frac{-7}{7}\)

And,

\(\frac{-9}{7}= \frac{-9\times1}{7\times1}=\frac{-9}{7}\)

Therefore,

\(-1-(\frac{-9}{7})\)

\(\frac{-7}{7}-(\frac{-9}{7})\)

\(\frac{-7+9}{7}\)

\(\frac{2}{7}\) 

522.

3/8 + -2/5 + 7/8 - 4/5 = ..................A) 1/3B) 1/20C) -1/4D) -1/20 

Answer»

Correct option is (B) 1/20

\(\frac{3}{8}+\frac{-2}{5}+\frac{7}{8}-\frac{4}{5}\) \(=\frac{3\times5-2\times8+7\times5-4\times8}{40}\) \(=\frac{15-16+35-32}{40}\) \(=\frac{-1+3}{40}=\frac{2}{40}=\frac{1}{20}.\)

Correct option is  B) 1/20 

523.

If we subtract 3/5 from 7/20 we get ………………… A) -1/4B) 1/4C) -1/2D) 2/7 

Answer»

Correct option is (A) -1/4

\(\frac{7}{20}\) - \(\frac{3}{5}\) = \(\frac{7-3\times4}{20}=\frac{7-12}{20}\) \(=\frac{-5}{20}=\frac{-1}{4}.\)

Correct option is  A) -1/4 

524.

If we subtract ……………… from -3/4 we get 5/6 . A) -1/3B) 1/12C) \(\frac{-19}{12}\)D) 9/4

Answer»

Correct option is (C)  −19/12

Let we subtract x from \(\frac{-3}{4}\) to get \(\frac{5}{6}\).

Thus, \(\frac{-3}{4}\) - x = \(\frac{5}{6}\)

\(\Rightarrow\) x = \(\frac{-3}{4}\) - \(\frac{5}{6}\) \(=\frac{-3\times3-5\times2}{12}=\frac{-9-10}{12}=\frac{-19}{12}.\)

Correct option is   C) \(\frac{-19}{12}\)

525.

Write five rational numbers greater than − 2.

Answer»

−2 can be represented as -14/7.

Therefore, five rational numbers greater than −2 are

-13/7, -12/7, -11/7 -10/7, -9/7

526.

 Write the additive of each of the following rational numbers:i) \(\frac{-2}{17}\)ii) \(\frac{3}{-11}\)iii) \(\frac{-17}{5}\)iv) \(\frac{-11}{25}\)

Answer»

i) The additive inverse of \(\frac{-2}{17}\)   is \(\frac{2}{17}\)

ii) The additive inverse of \(\frac{3}{-11 }\) is \(\frac{3}{11}\)

iii) The additive inverse of \(\frac{-17}{5}\) is \(\frac{17}{5}\)

iv) The additive inverse of \(\frac{-11}{-25}\) is \(\frac{-11}{25}\)

527.

Using commutativity and associativity of addition of rational numbers, express each of the following as a rational number:(i) \(\frac{2}{5}+\frac{7}{3}+\frac{-4}{5}+\frac{-1}{3}\)(ii) \(\frac{3}{7}+\frac{-4}{9}+\frac{-11}{7}+\frac{7}{9}\)(iii) \(\frac{2}{5}+\frac{8}{3}+\frac{-11}{15}+\frac{4}{5}+\frac{-2}{3}\)(iv) \(\frac{4}{7}+0\frac{-8}{9}+\frac{-13}{7}+\frac{17}{21}\)

Answer»

(i) Rearranging and grouping the numbers in pairs in such a way that each group contains a pair of rational numbers with equal denominator

We have,

\(\frac{2}{5}+\frac{7}{3}+\frac{-4}{5}+\frac{-1}{3}\)

\(\frac{2}{5}-\frac{4}{5}+\frac{7}{3}-\frac{1}{3}\) \(\frac{-2}{5}+\frac{6}{3}\)

\(\frac{-6}{15}+\frac{30}{15}\)

\(\frac{24}{15}\)

\(\frac{8}{5}\)

(ii) Rearranging and grouping the numbers in pairs in such a way that each group contains a pair of rational numbers with equal denominator

We have,

\(\frac{3}{7}+\frac{-4}{9}+\frac{-11}{7}+\frac{7}{9}\)

\(\frac{3}{7}-\frac{11}{7}+\frac{7}{9}-\frac{4}{9}\) = \(\frac{-8}{7}+\frac{3}{9}\)

\(\frac{-8}{7}+\frac{1}{3}\)

\(\frac{-24}{21}+\frac{7}{21}\)

\(\frac{-17}{21}\)

(iii) Rearranging and grouping the numbers in pairs in such a way that each group contains a pair of rational numbers with equal denominator

We have,

\(\frac{2}{5}+\frac{8}{3}+\frac{-11}{15}+\frac{4}{5}+\frac{-2}{3}\)

\(\frac{2}{5}+\frac{4}{5}+\frac{8}{3}-\frac{2}{3}-\frac{11}{15}\) = \(\frac{6}{5}+\frac{8-2}{3}-\frac{11}{15}\)

\(\frac{6}{5}+\frac{6}{3}+\frac{-11}{15}\)

\(\frac{18}{15}+\frac{30}{15}-\frac{11}{15}\)

\(\frac{18+30-11}{15}\)

\(\frac{37}{15}\)

(iv) Rearranging and grouping the numbers in pairs in such a way that each group contains a pair of rational numbers with equal denominator

We have,

\(\frac{4}{7}+0+\frac{-8}{9}+\frac{-13}{7}+\frac{17}{21}\)

\(\frac{4}{7}-\frac{13}{7}+0+\frac{-8}{9}+\frac{17}{21}\) = \(\frac{4-13}{7}+\frac{17}{21}-\frac{8}{9}\)

\(\frac{-9}{7}+\frac{17}{21}-\frac{8}{9}\)

\(\frac{-27+17}{21}-\frac{8}{9}\)

\(\frac{-10\times9}{21\times 9}-\frac{8\times 21}{9\times 21}\)

\(\frac{-90}{189}-\frac{168}{189}\)

\(\frac{-258}{189}\)

528.

Verify associativity of addition of rational numbers i.e.,  \((x+y)+z=x+(y+z)\) when:  (i)  \(x=\frac{1}{2}\,,y=\frac{2}{3}\;,z=\frac{-1}{5}\)(ii) \(x=\frac{-2}{5}\;,y=\frac{4}{3}\,,z=\frac{-7}{10}\)(iii) \(x=-2\;,y=\frac{3}{5}\;,z=\frac{-4}{3}\)

Answer»

i) As the property states \((x+y)+z=x+(y+z)\)

We use value as

\((\frac{1}{2}+\frac{2}{3})+\frac{-1}{5}\\=\frac{1}{2}+(\frac{2}{3}+\frac{-1}{5})\)

Let us consider L.H.S  \((\frac{1}{2}+\frac{2}{3})+\frac{-1}{5}\\\)

L.C.M for 2 and 3 is 6

\(\frac{(1\times3)}{(2\times3)}+\frac{(2\times2)}{(3\times2)}\\=\frac{3}{6}+\frac{4}{6}\\=\frac{7}{6}\\=\frac{7}{6}+\frac{-1}{5}\) (Since the denominators are same we add it)
L.C.M for 6 and 5 is 30

\(\frac{(7\times5)}{(6\times5)}+\frac{(-1\times6)}{(5\times6)}\\=\frac{35}{30}+\frac{-6}{30}\\=\frac{(35+(-6))}{30}\\=\frac{(35-6)}{30}\\=\frac{29}{30}\)(Since denominators are same we add it)

Let us consider R.H.S \(=\frac{1}{2}+(\frac{2}{3}+\frac{-1}{5})\)

L.C.M for 3 and 5 is 15

\(\frac{2}{3}+\frac{-1}{5}\\=\frac{(2\times5)}{(3\times5)}+\frac{(-1\times3)}{(5\times3)}\\=\frac{10}{15}+\frac{-3}{15}\)

\(\frac{10}{15}+\frac{-3}{15}\\=\frac{(10-3)}{15}\\=\frac{7}{15}\)    (Since the denominators are same we add it)

L.C.M for 2 and 15 is 30

\(\frac{1}{2}+\frac{7}{15}\\=\frac{(1\times15)}{(2\times15)}+\frac{(7\times2)}{(15\times2)}\\=\frac{15}{30}+\frac{14}{30}\\=\frac{29}{30}\)   (Since denominator is same we add it) 

\(\therefore\) L.H.S = R.H.S (associativity of addition of rational number is verified.

ii) As the property states \((x+y)+z=x+(y+z)\)

We use value as

\((\frac{-2}{5}+\frac{4}{3})+\frac{-7}{10}\\=\frac{-2}{5}+(\frac{4}{3 }+\frac{-7}{10})\)

Let us consider L.H.S \((\frac{-2}{5}+\frac{4}{3})+\frac{-7}{10}\\ \)

 LCM for 5 and 3 is 15

\(\frac{(-2\times3)}{(5\times3)}+\frac{(4\times5)}{(3\times5)}\\=\frac{-6}{15}+\frac{20}{15}\\=\frac{-6}{15}+\frac{20}{15}\\=\frac{(-6+20)}{15}\\=\frac{14}{15}\) ( Since denominators are same we add it)

Now,

\(\frac{14}{15}+\frac{-7}{10}\)

L.C.M for 15 and 30 is 30

\(\frac{(14\times2)}{(15\times2)}+\frac{(-7\times3)}{(10\times3)}\\=\frac{28}{30}+\frac{-21}{30}\\=\frac{(28+(-21))}{30}\\=\frac{(28-21)}{30}\\=\frac{7}{30}\) (Since the denominators are same we add it)
Let us take R.H.S \(\frac{-2}{5}+(\frac{4}{3 }+\frac{-7}{10})\)

L.C.M for 3 and 10 is 30

\(\frac{4}{3}+\frac{-7}{10}\\=\frac{(4\times10)}{(3\times10)}+\frac{(-7\times3)}{(10\times3)}\\=\frac{40}{30}+\frac{-21}{30}\\=\frac{40}{30}+\frac{-21}{30}\\=\frac{(40-21)}{30}\\=\frac{19}{30}\) ( Since the denominators are same we add it)

Now,

\(\frac{-2}{5}+\frac{19}{30}\)

LCM for 5 and 30 is 30

\(\frac{-2}{5}+\frac{19}{30}\\=\frac{(-2\times6)}{(5\times6)}+\frac{(19\times1)}{(30\times1)}\\=\frac{-12}{30}+\frac{19}{30}\\=\frac{(-12+19)}{30}\\=\frac{7}{30}\) (Since denominators are same we add it)

 \(\therefore\) L.H.S = R.H.S (associativity of addition of rational number is verified.

iii) As the property states \((x+y)+z=x+(y+z)\)

We use value as

\((\frac{-2}{1}+\frac{3}{5})+\frac{-4}{3}=\frac{-2}{1}+(\frac{3}{5}+\frac{-4}{3})\)

Let us consider L.H.S

\((\frac{-2}{1}+\frac{3}{5})+\frac{-4}{3}\)

 LCM for 1 and 5 is 5

\(\frac{(-2\times5)}{(1\times5)}+\frac{(3\times1)}{(5\times1)}\\=\frac{-10}{5}+\frac{3}{5}\\=\frac{(-10+3)}{5}\\=\frac{-7}{5}\)

Now,

\(\frac{-7}{5}+\frac{-4}{3}\)

LCM for 5 and 3 is 15

\(\frac{(-7\times3)}{(5\times3)}+\frac{(-4\times5)}{(3\times5)}\\=\frac{-21}{15}+\frac{-20}{15}\\=\frac{(-21+(-20))}{15}\\=\frac{-21-20}{15}\\=\frac{-41}{15}\) (Since the denominators are same)

Let us consider R.H.S

\(\frac{-2}{1}+(\frac{3}{5}+\frac{-4}{3})\)

LCM for 5 and 3 is 15

\(\frac{-3}{5}+\frac{-4}{3}\\=\frac{(3\times3)}{(5\times3)}+\frac{(-4\times5)}{(3\times5)}\\=\frac{9}{15}+\frac{-20}{15}\\=\frac{(9-20)}{15}\\=\frac{-11}{15}\) (Since denominators are same)

Now,

\(\frac{-2}{1}+\frac{-11}{15}\\=\frac{(-2\times15)}{(1\times15)}+\frac{(-11\times1)}{(15\times1)}\\=\frac{-30}{15}+\frac{-11}{15}\\=\frac{-41}{15}\)

 \(\therefore\) L.H.S = R.H.S (associativity of addition of rational number is verified.

529.

Using commutativity and associativity of addition of rational numbers, express each of the following as a rational number:i) \(\frac{2}{5}+\frac{7}{3}+\frac{-4}{5}+\frac{-1}{3}\)ii) \(\frac{3}{7}+\frac{-4}{9}+\frac{-11}{7}+\frac{7}{9}\)iii) \(\frac{2}{5}+\frac{8}{3}+\frac{-11}{15}+\frac{4}{5}+\frac{-2}{3}\)

Answer»

i) We classified the rational number with same denominators.

= (2+(-4))/5 + (7+(-1))/3
= (2-4)/5 + (7-1)/3
= -2/5 + 6/3

L.C.M for 5 and 3 is 15

\(= \frac{(-2\times3)}{(5\times3)}+\frac{(6\times5)}{(3\times5)}\\=\frac{-6}{15}+\frac{30}{15}\)

Now the given denominators are same, we add it.

\(\frac{(-6+30)}{15}\\=\frac{24}{15}\\=\frac{8}{5}\)

ii) We classified the rational number with same denominators.

 = 3/7 + (-11/7) + (-4/9) + 7/9

\(=\frac{(3+(-11))}{7}+\frac{(-4+7)}{9}\\=\frac{-8}{7}+\frac{3}{9}\\=\frac{-8}{7}+\frac{1}{3}\)

L.C.M for 7 and 3 is 21

\(=\frac{(-8\times3)}{(7\times3)}+\frac{(1\times7)}{(3\times7)}\\=\frac{-24}{21}+\frac{7}{21}\\=\frac{(-24+7)}{21}\\=\frac{-17}{21}\)

iii) We classified the rational number with same denominators.

2/5 + 4/5 + 8/3 + (-2/3) + (-11/15)

Now the given denominators are same, we add it.

\(=\frac{(2+4)}{5}+\frac{(8+(-2))}{3}+\frac{-11}{15}\\=\frac{6}{5}+\frac{(8-2)}{3}+\frac{-11}{15}\\=\frac{6}{5}+\frac{2}{1}+\frac{-11}{15}\)

L.C.M for 5,1 and 15 is 15

\(=\frac{(6\times3)}{(5\times3)}+\frac{(2\times15)}{(1\times15)}+\frac{(-11\times1)}{(15\times1)}\\=\frac{-18}{15}+\frac{30}{15}+\frac{-11}{15}\\=\frac{(18+30+(-11))}{15}\\=\frac{(18+30-11)}{15}\\=\frac{37}{15}\)

530.

Verify associativity of addition of rational numbers i.e., (x+y)+z = x+(y+z), when:(i) x = \(\frac{1}{2}\), y = \(\frac{2}{3}\), z = \(\frac{-1}{5}\)(ii) x = \(\frac{-2}{5}\), y = \(\frac{4}{3}\), z = \(-\frac{-7}{10}\)(iii) x = \(\frac{-7}{11}\),y = \(\frac{2}{-5}\),z = \(-\frac{-3}{22}\)(iv) x = -2, y = \(\frac{3}{5}\),z = \(\frac{-4}{3}\)

Answer»

(i) In order to verify this property, let us consider the following expressions:

Verification:

\(\frac{1}{2}+[\frac{2}{3}+(\frac{-1}{5})] = \frac{1}{2}+[\frac{10}{15}-\frac{3}{15}]\)

\(\frac{1}{2}+\frac{7}{15}\)

\(\frac{15+14}{30}\)

\(\frac{29}{30}\)

And,

\((\frac{1}{2}+\frac{2}{3})+(\frac{-1}{5})=(\frac{3}{6}+\frac{4}{6})-\frac{1}{5}\)

\(\frac{7}{6}-\frac{1}{5}\)

\(\frac{35-6}{30}\)

\(\frac{29}{30}\)

Therefore,

The associative property of additional of rational numbers has been verified

(ii) In order to verify this property, let us consider the following expressions:

Verification:
\(\frac{-2}{5}+[\frac{4}{3}+(\frac{-7}{10})]=\frac{-2}{5}+[\frac{40}{30}-\frac{21}{30}]\)

\(\frac{-12}{30}+\frac{19}{30}\)

\(\frac{-12+19}{30}\)

\(\frac{7}{30}\)

And,

\((\frac{-2}{5}+\frac{4}{3})+(\frac{-7}{10})=(\frac{-6}{15}+\frac{20}{15})-\frac{7}{10}\)

\(\frac{14}{15}-\frac{7}{10}\)

\(\frac{28-21}{30}\)

\(\frac{7}{30}\)

Therefore,

The associative property of additional of rational numbers has been verified

(iii) In order to verify this property, let us consider the following expressions:

Verification:

\(\frac{-7}{11}+[\frac{2}{-5}+(\frac{-3}{22})]=\frac{-7}{11}+[\frac{44}{-110}-\frac{15}{110}]\):

\(\frac{-7}{11}-\frac{29}{110}\)

\(\frac{-70-29}{110}\)

\(\frac{-99}{110}\)

And,

\((\frac{-7}{11}+\frac{2}{-5})+(\frac{-3}{22})\) \(=(\frac{-35}{55}-\frac{22}{35})-\frac{3}{22}\)

\(\frac{-57}{55}-\frac{3}{22}\)

\(\frac{-114+15}{110}\)

\(\frac{-99}{110}\)

Therefore,

The associative property of additional of rational numbers has been verified

(iv) In order to verify this property, let us consider the following expressions:

Verification:

\(-2+[\frac{3}{5}+(\frac{-4}{3})]\) = \(-2+[\frac{9}{15}-\frac{20}{15}]\)

\(-2-\frac{11}{15}\)

\(\frac{-30-11}{15}\)

\(\frac{-41}{15}\)

And,

\((-2+\frac{3}{5})+(\frac{-4}{3})\) = \(=(\frac{-10}{5}+\frac{3}{35})-\frac{4}{3}\)

\(\frac{-7}{5}-\frac{4}{3}\)

\(\frac{-21-20}{15}\)

\(\frac{-41}{15}\)

Therefore, The associative property of additional of rational numbers has been verified

531.

Simplify: (i) \(\frac{8}{9}+\frac{-11}{6}\)(ii) \(3+\frac{5}{-7}\)(iii) \(\frac{1}{-12}+\frac{2}{-15}\)(iv) \(0+\frac{-3}{5}\)(v) \(1+\frac{-4}{5}\)

Answer»

i) The LCM for 9 and 6 is 18.

\(\frac{(8\times2)}{(9\times2)}+\frac{(-11\times3)}{(6\times3)}\\\frac{16}{18}+\frac{-33}{18}\)

Since the denominators are same we can add them directly.We get

\(\frac{(16-33)}{18}=\frac{-17}{18 }\)

ii)  Firstly convert the denominator to positive number.

\(\frac{5}{-7}=\frac{(5\times-1)}{(-7\times-1)}\\\frac{-5}{7}\\=\frac{3}{1}+\frac{-5}{7}\)

The LCM for 1 and 7 which is 7

\(\frac{(3\times7)}{(1\times7)} +\frac{(-5\times1)}{(7\times1)}\\=\frac{21}{7}+\frac{-5}{7}\)

Since the denominators are same we can add them directly. We get

\(\frac{(21-5)}{7}=\frac{16}{7}\)

iii) Firstly convert the denominator to positive number then,

\(\frac{1}{-12}=\frac{(1\times-1)}{(-12\times-1)}\\=\frac{-1}{12}\)

Now,

\(\frac{2}{-15}=\frac{(2\times-1)}{(15\times-1)}\\=\frac{-2}{15}\)

So, \(\frac{-1}{12}+\frac{-2}{15}\)

The LCM for 12 and 15 which is 60.Now

\(\frac{(-1\times5)}{(12\times5)}+\frac{(-2\times4)}{(15\times4)}\\=\frac{-5}{60}+\frac{-8}{60}\)

Since the denominators are same we can add them.

\(\frac{(-5-8)}{60}=\frac{-13}{60}\)

iv) As we know that anything is added to 0 results is the same.

\(0+\frac{-3}{5}\\=\frac{-3}{5}\)

v) The LCM for 1 and 5  is 5

\(\frac{(1\times5)}{(1\times5)}+\frac{(-4\times1)}{(5\times1)}\\=\frac{5}{5}+\frac{-4}{5}\)

Since the denominators are same we can add them directly.We get

\(\frac{(5-4)}{5}=\frac{1}{5}\)

532.

Verify commutativity of addition of rational numbers for each of the following pairs of rational numbers:(i) \(\frac{-11}{5}\) and \(\frac{4}{7}\)(ii) \(\frac{4}{9}\)  and \(\frac{7}{-12}\)(iii) -4 and \(\frac{4}{-7}\)

Answer»

i) Using the commutativity law, the addition of rational numbers is commutative.

\(\therefore\frac{a}{b}+\frac{c}{d}=\frac{c}{d}+\frac{a}{b}\)

let us consider the given fraction

\(\frac{-11}{5}\) and \(\frac{4}{7}\) as

\(\frac{-11}{5}\)\(\frac{4}{7}\)and \(\frac{4}{7}\)+\(\frac{-11}{5}\)

The denominators are 5 and 7.The LCM of 5 and 7 is 35
We rewrite the given fraction in order to get the same denominator.We get

Now,\(\frac{-11}{5}\) = \(\frac{(11\times7)}{(5\times7)}\)

 \(=\frac{(-11\times7)}{(5\times7)}\\=\frac{-77}{35}\\\frac{4}{7}=\frac{(4\times5)}{(7\times5)}\\=\frac{20}{35}\)

Since the denominators are same we can add them directly

\(\frac{-77}{35}+\frac{20}{35}\\=\frac{(-77+20)}{35}\\=\frac{-50}{35}\)

ii) Firstly we need to convert the denominators to positive numbers.We get

\(\frac{7}{-12}=\frac{(7\times-1)}{(-12\times-1)}\\=\frac{-7}{12}\)

Using the commutativity law, the addition of rational numbers is commutative.

\(\therefore\frac{a}{b}+\frac{c}{d}=\frac{c}{d}+\frac{a}{b}\)

In order to verify the above property let us consider the given fraction.

\(\frac{4}{9}\) and \(\frac{-7}{12}\) as

\(\frac{4}{9}\)+\(\frac{-7}{12}\) and \(\frac{-7}{12}\)\(\frac{4}{9}\)

The denominators are 9 and 12. By taking LCM for 9 and 12 is 36
We rewrite the given fraction in order to get the same denominator.We get

Now , \(\frac{4}{9}=\frac{(4\times4)}{(9\times4)}\\=\frac{16}{36}\)

\(\frac{-7}{12}\) = \(\frac{(-7\times3)}{(12\times3)}=\frac{-21}{36}\)

\(\frac{-7}{12}\)+\(\frac{4}{9}\)

The denominators are 12 and 9 By taking LCM for 12 and 9 is 36.
We rewrite the given fraction in order to get the same denominator.We get

\(\frac{-7}{12}=\frac{(-7\times3)}{(12\times3) }\\=\frac{-21}{36}\)

\(\frac{4}{9}=\frac{(4\times4)}{9\times4)}\\=\frac{16}{36}\)

Since the denominators are same we can add them directly

\(\frac{-21}{36}+\frac{16}{36}=\frac{(-21+16)}{36}\\=\frac{-5}{36}\)

\(\therefore\frac{4}{9}+\frac{-7}{12}=\frac{-7}{12}+\frac{4}{9}\)  is satisfied

iii) Firstly we need to convert the denominators to positive numbers.

\(\frac{4}{-7}=\frac{(4\times-1)}{(-7\times-1)}\)

\(\frac{-4}{7}\)

By using the commutativity law, the addition of rational numbers is commutative

\(\therefore\frac{a}{b}+\frac{c}{d}=\frac{c}{d}+\frac{a}{b}\)

In order to verify the above property let us consider the given fraction

\(\frac{-4}{1}\) and \(\frac{-4}{7}\) as

\(\frac{-4}{1}\)\(\frac{-4}{7}\) and \(\frac{-4}{7}\) + \(\frac{-4}{1}\)

The denominators are 1 and 7 By taking LCM for 1 and 7 is 7.
We rewrite the given fraction in order to get the same denominator.We get

Now,

\(\frac{-4}{1}=\frac{(-4\times7)}{(1\times7)}\\=\frac{-28}{7}\)

\(\frac{-4}{7}=\frac{(-4\times1)}{(7\times1)}\\=\frac{-4}{7}\)

Since the denominators are same we can add them directly
\(\frac{-28}{7}+\frac{-4}{7}=\frac{(-28+(-4))}{7}\\=\frac{(-28-7)}{7}\\=\frac{-32}{7}\)

\(\frac{-4}{7}+-\frac{4}{1}\)

The denominators are 7 and 1. By taking LCM for 7 and 1 is 7. We rewrite the given fraction in order to get the same denominator.

Now,

\(\frac{-4}{7}=\frac{(-4\times1)}{(7\times1)}\\=\frac{-4}{7}\)

\(\frac{-4}{1}=\frac{(-4\times7)}{(1\times7)}\\=\frac{-28}{7}\)

Since the denominators are same we can add them directly.We get

\(\frac{-4}{7}+\frac{-28}{7}=\frac{(-4+(-28))}{7}\\=\frac{(-4-28)}{7}\\=\frac{-32}{7}\)

\(\therefore \frac{-4}{1}+\frac{-4}{7}=\frac{-4}{7}+\frac{-4}{1}\) is satisfied

533.

Verify commutativity of addition of rational numbers for each of the following pairson of rational numbers:(i) \(\frac{-11}{5}\) and \(\frac{4}{7}\)(ii) \(\frac{4}{9}\) and \(\frac{7}{-12}\)(iii) \(\frac{-3}{5}\) and \(\frac{-2}{-15}\)(iv) \(\frac{2}{-7}\) and \(\frac{12}{-35}\)(v) 4 and \(\frac{-3}{5}\)(vi) -4 and \(\frac{4}{-7}\)

Answer»

(i) The addition of rational number is commutative

i.e, if \(\frac{a}{b}\) and \(\frac{c}{d}\) are any two rational numbers, then

\(\frac{a}{b}+\frac{c}{d}=\frac{c}{d}+\frac{a}{b}\)

Verification: In order to verify this property,

Let us consider two expressions:

\(\frac{-11}{5}+\frac{4}{7}\)

And,

\(\frac{4}{7}+\frac{-11}{5}\)

We have:

\(\frac{-11}{5}+\frac{4}{7}=\frac{-77}{35}+\frac{20}{35}\)

\(\frac{-77+20}{35}\)

\(\frac{-57}{35}\)

And,

\(\frac{4}{7}+\frac{-11}{5}=\frac{20}{35}+\frac{-77}{35}\)

\(\frac{20-77}{35}\)

\(\frac{-57}{35}\)

Therefore,

\(\frac{-11}{5}+\frac{4}{7}=\frac{4}{7}+\frac{-11}{5}\)

(ii) The addition of rational number is commutative i.e, if \(\frac{a}{b}\) and \(\frac{c}{d}\) are any two rational numbers, then

\(\frac{a}{b}+\frac{c}{d}=\frac{c}{d}+\frac{a}{b}\)

Verification: In order to verify this property,

Let us consider two expressions:

\(\frac{4}{9}+\frac{-7}{12}\)

And,

\(\frac{-7}{12}+\frac{4}{9}\)

We have:

\(\frac{4}{9}+\frac{-7}{12}=\frac{16}{36}+\frac{-21}{36}\)

\(\frac{16-21}{36}\)

\(\frac{-5}{36}\)

And,

\(\frac{-7}{12}+​​\frac{4}{9}=\frac{-21}{36}+\frac{16}{36}\)

\(=\frac{-21+16}{36}\)

\(\frac{-5}{36}\)

Therefore,

\(\frac{4}{9}+\frac{-7}{12}=\frac{-7}{12}+\frac{4}{9}\)

(iii) The addition of rational number is commutative i.e, if \(\frac{a}{b}\) and \(\frac{c}{d}\)are any two rational numbers, then

\(\frac{a}{b}+​​\frac{c}{d}=\frac{c}{d}+\frac{a}{b}\)

Verification: In order to verify this property,

Let us consider two expressions:

\(\frac{3}{5}+\frac{-2}{-15}\)

And,

\(\frac{-2}{-15}+\frac{3}{5}\)

We have:

\(\frac{3}{5}+​​\frac{-2}{-15}=\frac{-3}{5}+\frac{2}{15}\)

\(\frac{-9+2}{15}\)

\(\frac{-7}{15}\)

And,

\(\frac{-2}{-15}+​​\frac{3}{5}=\frac{-2}{-15}+\frac{3}{5}\)

\(\frac{2-9}{15}\)

\(\frac{-7}{15}\)

Therefore,

\(\frac{3}{5}+​​\frac{-2}{-15}=\frac{-2}{-15}+\frac{3}{5}\)

(iv) The addition of rational number is commutative i.e, if \(\frac{a}{b}\) and \(\frac{c}{d}\) are any two rational numbers, then

\(\frac{a}{b}+​​\frac{c}{d}=\frac{c}{d}+\frac{a}{b}\)

Verification: In order to verify this property,

Let us consider two expressions:

\(\frac{2}{-7}+\frac{12}{-35}\)

And,

\(\frac{12}{-35}+\frac{2}{-7}\)

We have:

\(\frac{2}{-7}+​​\frac{12}{-35}=\frac{-10}{35}+\frac{-12}{35}\)

\(\frac{-10-12}{35}\)

\(\frac{-22}{35}\)

And,

\(\frac{12}{-35}+​​\frac{2}{7}=\frac{-12}{35}+\frac{-10}{35}\)

\(\frac{-12-10}{35}\)

\(\frac{-22}{35}\)

Therefore,

\(\frac{2}{-7}+​​\frac{12}{-35}=\frac{12}{-35}+\frac{2}{-7}\)

(v) The addition of rational number is commutative i.e, if \(\frac{a}{b}\) and \(\frac{c}{d}\) are any two rational numbers, then

\(\frac{a}{b}+​​\frac{c}{d}=\frac{c}{d}+\frac{a}{b}\)

Verification: In order to verify this property, Let us consider two expressions:

\(4+\frac{-3}{5}\)

And,

\(\frac{-3}{5}+4\)

We have:

\(4+\frac{-3}{5}\)=\(\frac{20}{5}-\frac{3}{5}\)

\(\frac{20-3}{5}\)

\(\frac{17}{5}\)

And,

\(\frac{-3}{5}+4\)\(\frac{-3}{5}+\frac{20}{5}\)

\(\frac{-3+20}{5}\)

\(\frac{17}{5}\)

Therefore,

\(4+\frac{-3}{5}\)\(\frac{-3}{5}+4\)

(vi) The addition of rational number is commutative i.e, if \(\frac{a}{b}\) and \(\frac{c}{d}\) are any two rational numbers, then

\(\frac{a}{b}+​​\frac{c}{d}=\frac{c}{d}+\frac{a}{b}\)

Verification: In order to verify this property,

Let us consider two expressions:

\(-4+\frac{4}{-7}\)

And,

\(\frac{4}{-7}-4\)

We have:

\(-4+\frac{4}{-7}\)=\(\frac{-28}{7}-\frac{4}{7}\)

\(\frac{-28-4}{7}\)

\(\frac{-32}{7}\)

And,

\(\frac{4}{-7}-4\)=\(\frac{-4}{7}-\frac{28}{7}\)

\(\frac{-4-28}{7}\)

\(\frac{-32}{7}\)

Therefore,

\(-4+\frac{4}{-7}\)=\(\frac{4}{-7}-4\)

534.

Add and express the sum as a mixed fraction:(i) \(\frac{-12}{5}\) and \(\frac{43}{10}\)(ii) \(\frac{-31}{6}\) and \(\frac{-27}{8}\)

Answer»

i)  We add the given fraction

\(\frac{12}{5}+\frac{43}{10}\)

The L.C.M of 5 and 10  is 10

\(\frac{(-12\times2)}{(5\times2)}+\frac{(43\times1)}{(10\times1)}\\=\frac{-24}{10}+\frac{43}{10}\)

The denominators are same we can add them directly.We get

\(\frac{(-24+43)}{10}=\frac{19}{10}\)

\(\therefore\)  \(\frac{19}{10}\)can be written in mixed fraction as \(\frac{9}{10}{1}\)

ii)  We add the given fraction

\(\frac{-31}{6}+\frac{-27}{8}\)

The L.C.M of  6 and 8  is 24

\(\frac{(-31\times4)}{(6\times4)}+\frac{(-27\times3)}{(8\times3)}\\=\frac{-124}{24}+\frac{-81}{24}\)

The denominators are same we can add them directly.We get

\(\frac{(-124-81)}{24}=\frac{-205}{24}\)

\(\frac{-205}{24}\) can be written in mixed fraction as \(-8\frac{13}{24}\)

535.

Add and express the sum as a mixed fraction:(i) \(\frac{-12}{5}\) and \(\frac{43}{10}\)(ii) \(\frac{24}{7}\) and \(\frac{-11}{4}\)(iii) \(\frac{-31}{6}\) and \(\frac{-27}{8}\)(iv) \(\frac{101}{6}\) and \(\frac{7}{8}\)

Answer»

(i) The denominators of the given rational numbers 5 and 10 respectively.

The L.C.M of 5 and 10 is 10

Now,

We write the given rational numbers into forms in which both of them have the same denominator

\(\frac{-12\times2}{5\times2}=\frac{-24}{10}\)

And,

\(\frac{43\times1}{10\times1}=\frac{43}{10}\)

Therefore,

\(\frac{-24}{10}+\frac{43}{10}=\frac{-24+43}{10}\)

\(\frac{19}{10}\)

\(1\frac{9}{10}\)

(ii) The denominators of the given rational numbers 7 and 4 respectively.

The L.C.M of 7 and 4 is 28

Now,

We write the given rational numbers into forms in which both of them have the same denominator

\(\frac{24\times4}{7\times4}=\frac{96}{28}\)

And,

\(\frac{-11\times7}{4\times7}=\frac{-77}{28}\)

Therefore,

\(\frac{96}{28}-\frac{77}{28}=\frac{96-77}{28}\)

\(\frac{19}{28}\)

\(1\frac{9}{10}\)

(iii) The denominators of the given rational numbers 6 and 8 respectively.

The L.C.M of 6 and 8 is 24

Now,

We write the given rational numbers into forms in which both of them have the same denominator

\(\frac{-31\times4}{6\times4}=\frac{-124}{24}\)

And,

\(\frac{-27\times3}{8\times3}=\frac{-81}{24}\)

Therefore,

\(\frac{-124}{24}-\frac{81}{24}=\frac{-124-81}{24}\)

\(\frac{-205}{24}\)

 \(-8\frac{13}{24}\)

(iv) The denominators of the given rational numbers 6 and 8 respectively.

The L.C.M of 6 and 8 is 24

Now,

We write the given rational numbers into forms in which both of them have the same denominator

\(\frac{101\times4}{6\times4}=\frac{404}{24}\)

And,

\(\frac{7\times3}{8\times3}=\frac{21}{24}\)

Therefore,

\(\frac{404}{24}+\frac{21}{24}=\frac{404+21}{24}\)

\(\frac{425}{24}\)

\(17\frac{17}{24}\)

536.

a x b = b x a follows which property? (a) Associative (b) Closed (c) Inverse (d) Commutative

Answer»

(d) Commutative

537.

a x (b x c) = (a x b) x c follows which property? (a) Associative under multiplication (b) Commutative under multiplication (c) Associative under Addition (d) Commutative under Addition

Answer»

(a) Associative under multiplication

538.

Name the property indicated in the following:(i) 315+115 = 430(ii) \(\frac{3}{4}\times \frac{9}{5} = \frac{27}{20}\)(iii) 5 + 0 = 0 + 5 = 5(iv) \(\frac{8}{9}\times1 = \frac{8}{9}\)(v) \(\frac{8}{17} + \frac{-8}{17} = 0\)(vi) \(\frac{22}{23}\times\frac{23}{22} = 1\)

Answer»

 (i) 315+115 = 430

Closure property of addition

(ii) \(\frac{3}{4}\times \frac{9}{5} = \frac{27}{20}\)

Closure property of multiplication.

(iii) 5 + 0 = 0 + 5 = 5

0 is the additive identity.

(iv) \(\frac{8}{9}\times1 = \frac{8}{9}\)

1 is the multiplicative identity

(v) \(\frac{8}{17} + \frac{-8}{17} = 0\)

\(\frac{-8}{17}\)

(vi) \(\frac{22}{23}\times\frac{23}{22} = 1\)

\(\frac{23}{22}\) is the multiplicative identity

539.

Write ‘T’ for true and ‘F’ for false for each of the following: (i) Rational numbers are always closed under subtraction. (ii) Rational numbers are always closed under division.(iii) \(1\div0=0.\)(iv) Subtraction is commutative on rational numbers.(v) \(-(\frac{-7}{8})=\frac{7}{8}.\)

Answer»

(i) true 

Let there be two rational numbers \(\frac{a}{b}\) and \(\frac{c}{d}\)

Then,

\(\frac{a}{b}-\frac{c}{d}= \frac{ad-bc}{bd}\) 

which is also a rational number

Hence, 

Rational numbers are always closed under subtraction.

(ii) false

\(\frac{a}{0}=\infty\)

Hence, 

Rational numbers are not always closed under division.

(iii) false

\(\frac{1}{0}=\infty\)

Hence, \(\frac{1}{0}=\infty\) 

(iv) false

Let there be two rational numbers \(\frac{a}{b}\) and \(\frac{c}{d}\) 

Then,

\(\frac{a}{b}-\frac{c}{d}=\frac{ad-bc}{bd}\)

And

\(\frac{c}{d}-\frac{a}{b}=\frac{bc-ad}{bd}\)

Therefore,

\(\frac{a}{b}-\frac{c}{d}\neq\frac{c}{d}-\frac{a}{b}\)

Hence, 

Subtraction is not commutative on rational numbers.

(v) true

\((\frac{-7}{8})=-1\times\frac{-7}{8}=\frac{7}{8}\)

540.

Find ten rational numbers between \(\frac{3}{5}\) and \(\frac{3}{4}\)

Answer»

The L.C.M of denominators 5 and 4 is 20

Converting the given rational numbers into equivalent rational number having common denominator 20

we get:

\(\frac{3}{5}\times \frac{20}{20}\) = \(\frac{60}{100}\)

 \(\frac{3}{4}\times \frac{25}{25}\) = \(\frac{75}{100}\)

Clearly,

61, 62, 63,…, 74 are integers between numerators 60 and 75 of these equivalent rational numbers

Thus we have

\(\frac{61}{100}\),\(\frac{62}{100}\),.......,\(\frac{74}{100}\)

As rational number between \(\frac{3}{5}\) and \(\frac{3}{4}\)

We can take only 10 of these as required rational numbers

\(\frac{61}{100}\),\(\frac{62}{100}\),\(\frac{63}{100}\),...........,\(\frac{73}{100}\),\(\frac{74}{100}\)

541.

Verify the property x × (y + z) = x × y + x × z of rational numbers by taking x = -1/5, y = 2/15, z = -3/10.

Answer»

In the question is given to verify the property x × (y + z) = x × y + x × z

The arrangement of the given rational number is as per the rule of distributive property of multiplication over addition.

Then, (-1/5) × ((2/15) + (-3/10)) = ((-1/5) × (2/15)) + ((-1/5) × (-3/10))

LHS = (-1/5) × ((2/15) + (-3/10))

= (-1/5) × ((4 – 9)/30)

= (-1/5) × (-5/30)

= (-1/1) × (-1/30)

= 1/30

RHS = ((-1/5) × (2/15)) + ((-1/5) × (-3/10))

= (-2/75) + (3/50)

= (-4 + 9)/150

= 5/150

= 1/30

By comparing LHS and RHS

LHS = RHS

∴ 1/30 = 1/30

Hence x × (y + z) = x × y + x × z

542.

Verify the property: x x (y x z)=(x x y) x z by taking:(i) x = \(\frac{-7}{3}\), y = \(\frac{12}{5}\), z = \(\frac{4}{9}\)(ii)  x = 0, y = \(\frac{-3}{5}\), z = \(\frac{-9}{4}\)(iii)  x = \(\frac{1}{2}\), y = \(\frac{5}{-4}\), z = \(\frac{-7}{5}\)(iv)  x = \(\frac{5}{7}\), y = \(\frac{-12}{13}\), z = \(\frac{-7}{18}\)

Answer»

(i) We have,

x = \(\frac{-7}{3}\), y = \(\frac{12}{5}\) and z = \(\frac{4}{9}\)

= x x (y x z) = \(\frac{-7}{3}\times (\frac{12}{5}\times \frac{4}{9})\)

\(\frac{-7}{3}(\frac{48}{45})\)

\(\frac{-112}{45}\)

(x x y) x z = \((\frac{-7}{3}\times \frac{12}{5})\times \frac{4}{9}\)

\(\frac{-7}{3}(\frac{48}{45})\)

\(\frac{-112}{45}\)

(ii) We have,

 x = 0, y = \(\frac{-3}{5}\) and z = \(\frac{-9}{4}\)

= x x (y x z) = \(0\times (\frac{-3}{5}\times \frac{-9}{4})\)

 = 0

 (x x y) x z = \((0\times \frac{-3}{5})\times \frac{-9}{4}\)

 = 0

(iii) We have,

 x = \(\frac{1}{2}\), y = \(\frac{5}{-4}\) and z = \(\frac{-7}{5}\)

= x x (y x z) = \(\frac{1}{2}\times (\frac{5}{-4}\times \frac{-7}{5})\)

\(\frac{1}{2}(\frac{7}{4})\)

\(\frac{7}{8}\)

 (x x y) x z = \((\frac{1}{2}\times \frac{5}{-4})\times \frac{-7}{5}\)

\(\frac{-5}{8}(\frac{-7}{5})\)

\(\frac{7}{8}\)

(iv) We have,

  x = \(\frac{5}{7}\), y = \(\frac{-12}{13}\) and z = \(\frac{-7}{18}\)

= x x (y x z) = \(\frac{5}{7}\times (\frac{-12}{13}\times \frac{-7}{18})\)

 = \(\frac{10}{39}\)

  (x x y) x z = \((\frac{5}{7}\times \frac{-12}{13})\times \frac{-7}{8}\)

\(\frac{60}{91}(\frac{-7}{18})\)

\(\frac{10}{39}\)

543.

Which of the following rational numbers is equivalent to 2/3 ?(a) 3/2 (b) 4/9 (c) 4/6 (d) 9/4

Answer»

Correct answer is (c) 4/6

544.

If 36 trousers of equal sizes can be stitched with 64 meters of cloth. What is the length of the cloth required for each trouser?

Answer»

36 trousers of equal sizes can he stitched with 64 mts of cloth, then the length of the cloth ¡s required for each trouser

= 64 ÷ 36

\(\frac{64}{36}=\frac{16}9= 1\frac79\)

545.

If 24 trousers of equal size can be prepared in 54 metres of cloth. What length of cloth is required for each trouser?

Answer»

No. of trousers = 24

Total length of cloth = 54

Length of cloth required for each trousers = \(\frac{Total\,length\,of\,cloth}{No.\,of\,trousers}\)

\(\frac{54}{12}\)

 = \(\frac{9}{2}\)m

546.

Divide the sum of (-13/5) and (12/7) by the product of (-31/7) and (-1/2).

Answer»

Given

((-13/5) + (12/7)) ÷ (-31/7) x (-1/2)

= ((-13/5) × (7/7) + (12/7) × (5/5)) ÷ (31/14)

= ((-91/35) + (60/35)) ÷ (31/14)

= (-31/35) ÷ (31/14)

= (-31/35) × (14/31)

= (-14/35)

= (-2/5)

547.

Divide the sum of -13/5 and 12/7 by the product of -31/7 and -1/2.

Answer»

The sum is given -13/5 + 12/7

= -13/5 + 12/7

((-13×7) + (12×5)) /35

(-91+60)/35

= -31/35

Now, Product of -31/7 and -1/2

= -31/7 × -1/2

= (-31×-1)/(7×2)

= 31/14

∴ by dividing the sum and the product we get the value as,

= (-31/35) / (31/14)

= (-31/35) × (14/31)

= (-31×14)/(35×31)

= -14/35

= -2/5

548.

What number should be subtracted from \(\frac{-5}{3}\) to get \(\frac{5}{6}\) ?

Answer»

Suppose x be the rational number to be subtracted to \(\frac{-5}{3}\) to get \(\frac{5}{6}\)

Then,

\(\frac{-5}{3}\) - x = \(\frac{5}{6}\)

\(\frac{-5}{3}\) - \(\frac{x\times3}{3}\) = \(\frac{5}{6}\)

 \(\frac{-5}{3}\) - \(\frac{-3x}{3}\) = \(\frac{5}{6}\)

 \(\frac{-5-3x}{3}\) = \(\frac{5}{6}\)

-5-3x =  \(\frac{15}{6}\)

-3x = \(\frac{-15}{6}\)+ 5

-3x = \(\frac{15\times 1+5\times 6}{6}\)

-3x = \(\frac{15+30}{6}\)

-3x = \(\frac{45}{6}\)

-18x = 45

x = \(\frac{-45}{18}\)

x = \(\frac{-5}{2}\)

Therefore,

The required number x = \(\frac{-5}{2}\)

549.

The sum of two numbers is (– 4/3). If one of the numbers is -5, find the other.

Answer»

Given sum of two numbers = (-4/3)

One of them is -5

Let the required number be x

x + (-5) = (-4/3)

LCM of 1 and 3 is 3

(-5/1) = (-5/1) × (3/3) = (-15/3)

On substituting

x + (-15/3) = (-4/3)

x = (-4/3) – (-15/3)

x = (-4/3) + (15/3)

x = (-4 + 15)/3

x = (11/3)

550.

By what number should -33/16 be divided to get -11/4?

Answer» Let a number be  = x

So, (-33/16) / x = -11/4

-33/16 = x × -11/4

x = (-33/16) / (-11/4)

= (-33/16) × (4/-11)

= (-33×4) / (16×-11)

= (-3×1) / (4×-1)

= 3/4