

InterviewSolution
1. |
Verify the property: x x (y x z)=(x x y) x z by taking:(i) x = \(\frac{-7}{3}\), y = \(\frac{12}{5}\), z = \(\frac{4}{9}\)(ii) x = 0, y = \(\frac{-3}{5}\), z = \(\frac{-9}{4}\)(iii) x = \(\frac{1}{2}\), y = \(\frac{5}{-4}\), z = \(\frac{-7}{5}\)(iv) x = \(\frac{5}{7}\), y = \(\frac{-12}{13}\), z = \(\frac{-7}{18}\) |
Answer» (i) We have, x = \(\frac{-7}{3}\), y = \(\frac{12}{5}\) and z = \(\frac{4}{9}\) = x x (y x z) = \(\frac{-7}{3}\times (\frac{12}{5}\times \frac{4}{9})\) = \(\frac{-7}{3}(\frac{48}{45})\) = \(\frac{-112}{45}\) (x x y) x z = \((\frac{-7}{3}\times \frac{12}{5})\times \frac{4}{9}\) = \(\frac{-7}{3}(\frac{48}{45})\) = \(\frac{-112}{45}\) (ii) We have, x = 0, y = \(\frac{-3}{5}\) and z = \(\frac{-9}{4}\) = x x (y x z) = \(0\times (\frac{-3}{5}\times \frac{-9}{4})\) = 0 (x x y) x z = \((0\times \frac{-3}{5})\times \frac{-9}{4}\) = 0 (iii) We have, x = \(\frac{1}{2}\), y = \(\frac{5}{-4}\) and z = \(\frac{-7}{5}\) = x x (y x z) = \(\frac{1}{2}\times (\frac{5}{-4}\times \frac{-7}{5})\) = \(\frac{1}{2}(\frac{7}{4})\) = \(\frac{7}{8}\) (x x y) x z = \((\frac{1}{2}\times \frac{5}{-4})\times \frac{-7}{5}\) = \(\frac{-5}{8}(\frac{-7}{5})\) = \(\frac{7}{8}\) (iv) We have, x = \(\frac{5}{7}\), y = \(\frac{-12}{13}\) and z = \(\frac{-7}{18}\) = x x (y x z) = \(\frac{5}{7}\times (\frac{-12}{13}\times \frac{-7}{18})\) = \(\frac{10}{39}\) (x x y) x z = \((\frac{5}{7}\times \frac{-12}{13})\times \frac{-7}{8}\) = \(\frac{60}{91}(\frac{-7}{18})\) = \(\frac{10}{39}\) |
|