

InterviewSolution
1. |
Using commutativity and associativity of addition of rational numbers, express each of the following as a rational number:i) \(\frac{2}{5}+\frac{7}{3}+\frac{-4}{5}+\frac{-1}{3}\)ii) \(\frac{3}{7}+\frac{-4}{9}+\frac{-11}{7}+\frac{7}{9}\)iii) \(\frac{2}{5}+\frac{8}{3}+\frac{-11}{15}+\frac{4}{5}+\frac{-2}{3}\) |
Answer» i) We classified the rational number with same denominators. = (2+(-4))/5 + (7+(-1))/3 L.C.M for 5 and 3 is 15 \(= \frac{(-2\times3)}{(5\times3)}+\frac{(6\times5)}{(3\times5)}\\=\frac{-6}{15}+\frac{30}{15}\) Now the given denominators are same, we add it. \(\frac{(-6+30)}{15}\\=\frac{24}{15}\\=\frac{8}{5}\) ii) We classified the rational number with same denominators. = 3/7 + (-11/7) + (-4/9) + 7/9 \(=\frac{(3+(-11))}{7}+\frac{(-4+7)}{9}\\=\frac{-8}{7}+\frac{3}{9}\\=\frac{-8}{7}+\frac{1}{3}\) L.C.M for 7 and 3 is 21 \(=\frac{(-8\times3)}{(7\times3)}+\frac{(1\times7)}{(3\times7)}\\=\frac{-24}{21}+\frac{7}{21}\\=\frac{(-24+7)}{21}\\=\frac{-17}{21}\) iii) We classified the rational number with same denominators. 2/5 + 4/5 + 8/3 + (-2/3) + (-11/15) Now the given denominators are same, we add it. \(=\frac{(2+4)}{5}+\frac{(8+(-2))}{3}+\frac{-11}{15}\\=\frac{6}{5}+\frac{(8-2)}{3}+\frac{-11}{15}\\=\frac{6}{5}+\frac{2}{1}+\frac{-11}{15}\) L.C.M for 5,1 and 15 is 15 \(=\frac{(6\times3)}{(5\times3)}+\frac{(2\times15)}{(1\times15)}+\frac{(-11\times1)}{(15\times1)}\\=\frac{-18}{15}+\frac{30}{15}+\frac{-11}{15}\\=\frac{(18+30+(-11))}{15}\\=\frac{(18+30-11)}{15}\\=\frac{37}{15}\) |
|