Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

An insect fly start from one corner of a cubical room and reaches at diagonally opposite corner. The magnitude or displacement of the insect is `40sqrt(3)` ft. Find the volume of cube.A. `64sqrt(3)ft^(3)`B. `1600ft^(3)`C. `64000ft^(3)`D. None of these

Answer» (c) Here, `sqrt(3)a=40sqrt(3)ft`
`:. a=40ft`
`:.` Volume `=a^(3)=(40ft)^(3)=64000ft^(3)`
2.

If `A.B=AxxB`, then angle between `A` and `B` isA. `45^(@)`B. `30^(@)`C. `60^(@)`D. `90^(@)`

Answer» (a) `A.B=AxxB=ABcos theta=AB sin theta`
`tan theta=1=tan theta =tan 45^(@) impliestheta=45^(@)`
3.

If `|AxxB| = sqrt3 A.B,` then the value of |A+B| isA. `(A^(2)+B^(2)+(AB)/(sqrt(3)))^(1//2)`B. `A+B`C. `(A^(2)+B^(2)+sqrt(3)AB)^(1//2)`D. `(A^(2)+B^(2)+AB)^(1//2)`

Answer» Correct Answer - D
(d) `ABsintheta=sqrt(3)ABcosthetaortantheta=sqrt(3)`
`:.theta=60^(@)`
Now `|A+B|=sqrt(A^(2)+B^(2)+2ABcos60^(@))`
`=sqrt(A^(2)+B^(2)AB)`
4.

Find the vector that must be added to the vector `hat(i)-3hat(j)+2hat(k)` and `3hat(i)+6hat(j)-7hat(k)` so that the resultant vector is a unit vector along the y-axis.A. `-4hat(i)-2hat(j)+5hat(k)`B. `-4hat(i)+2hat(j)+5hat(k)`C. `4hat(i)-2hat(j)+5hat(k)`D. `4hat(i)-2hat(j)-5hat(k)`

Answer» Correct Answer - A
(a) `(hat(i)-3hat(j)+2hat(k))+(3hat(i)+6hat(j)-7hat(k))+r=hat(j)`
`rArr r=-4hat (i)-2hat(j)+5hat(k)`
5.

The angle between `A` the resultant of `(A+B)` and `(A-B)` will beA. `0^(@)`B. `tan^(-1)(A/B)`C. `tan^(-1)(B/A)`D. `tan^(-1)((A-B)/(A+B))`

Answer» (a) `R=(A+B)+(A-B)` ltbrLgt `R=2A`
The angle between `A` and `2A` is zero, because they are parallel vectors.
6.

If `P+Q=0`. Then which of the following is necessarily ture?A. `P=0`B. `P= -Q`C. `Q=0`D. `P=Q`

Answer» Correct Answer - B
The sum of two vectors is zero only when one vector is equal in jmagnitude but oppositein direction to that of other vector.
7.

`vecA + vecB` can also be written asA. A-BB. B-AC. B+AD. B.A

Answer» Correct Answer - C
(C) As vector addition is commutative. So,` A=B=B+A.`
8.

What happens, when we multiply a vector by `(-2)`A. Direction reverses and unit chargesB. Direction reverses and magnitude is doubledC. Direction remains unchanged and unit changesD. None of the above

Answer» Correct Answer - B
(b)When a vector is multiplied by a negative scalar number, then its magnitude gets change and direction gets reversed.
9.

A vector multiplied by the number 0, results into

Answer» Correct Answer - C
(c) When a vector is multiplied by zero, it results into zero vector, i.e.,a vector having zero magnitude. It is written as 0.
10.

what is the dot product of two vectors of magnitudes 3 and 5,if angle between them is `60^@`?A. 5.2B. 7.5C. 8.4D. 8.6

Answer» Correct Answer - B
(b) We have,`A.B=ABcostheta`
`=(5)(3)cos60^(@)=75`
11.

If `(|a+b|)/(|a-b|)=1`, then the angle between `a` and `b` isA. `0^(@)`B. `45^(@)`C. `90^(@)`D. `60^(@)`

Answer» (c) `(|a+b|)/(|a-b|)=1`
or `|a+|=|a-b|`
or `sqrt(a^(2)+b^(2)+2ab cos alpha)=sqrt(a^(2)+b^(2)-2ab cos alpha)`
or `a^(2)+b^(2)+2ab cos alpha=a^(2)+b^(2)-2ab cos alpha`
or` 4ab cos alpha=0` or `cos alpha=0`
or `alpha=90^(@)`
12.

If two forces of equal magnitude 4 units acting at a point and the angle between them is `120^(@)`, then find the magnitude of direction of the sum of the two vectorsA. `4, theta=tan^(-10(1.73)`B. `4, theta=tan^(-1)(0.73)`C. `2, theta=tan^(-1)(1.73)`D. `6, theta^(-1)(0.73)`

Answer» (a) `|R|=|a+b|=sqrt(4^(2)+4^(2)+2(4)cos 120^(@))`
`|R|=4`
Let `theta=` angle between `a+b` with `x`-axis
`theta=tan^(-1)((4sin (120^(@)))/(4+4cos(120^(@))))="tan"^(-1)(3.646)/2=tan^(-1)(1.73)`
13.

If `A` and `B` denote the sides of a parallelogram and its area is `1/2AB` (`A` and `B` are magnitude of `A` and `B` respectively), the angle between `A` and `B` isA. `30^(@)`B. `45^(@)`C. `60^(@)`D. `90^(@)`

Answer» (a) Area of parallelogram `=|AxxB|`
`AB sin theta=1/2 ABimpliessin theta =1/2 implies theta =30^(@)`
14.

A cat is situated at a point `A(0,3,4)` and rat is situated at point `B(5,0,-8)`. The car is free to move but the rat is always at rest. Find the minimum distance travelled by cat to catch the rat.A. 5 unitB. 12 unitC. 13 unitD. 17 unit

Answer» (c) The minimum distance
`=` The magnitude of displacement of cat `=|r_(B)-r_(A)|`
Here `r_(B)=5hati-8hatk, r_(A)=3hati+4hatk`
`:.s=r_(B)-r_(A)=5hati-3hatj-12hatk`
`:.|s|=sqrt((5)^(2)+(-3)^(2)+(-12)^(2))`
`=sqrt(25+9+144)`
`=13.34~~13` unit
15.

Calculate the distance travelled by the car, if a car travels `4km` towards north at an angle of `45^(@)` to the east and then travels a distance of `2km` towards north at an angle of `135^(@)` to the est.A. `6km`B. `8km`C. `5km`D. `2km`

Answer» (a) As the distance is a scalar quantity. So, total distance travelled `=4+2=6km`
16.

Find the area oif the parallelogram determined `A=2hati+hatj-3hatk` and `B=12hatj-2hatk`A. 42B. 56C. 38D. 74

Answer» (a) `AxxB=|(hati, hatj, hatk),(2, 1, -3),(0, 12, -2)|`
`=hati(-2+36)-hatj(-4-0)+hatk(24-0)`
`=34hati+4hatj+24hatk`
`|AxxB|=sqrt(1156+16+576)=4181~~42`
17.

A force `F=(2hati+3hatj-hatk)N` is acting on a body at a position `r=(6hati-3hatj-2hatk)`. Calculate the torque about the originA. `(3hati+2hatj+12hatk)Nm`B. `(9hati+2hatj+7hatk)Nm`C. `(hati+2hatj+12hatk)Nm`D. `(3hati+12hatj+hatk)Nm`

Answer» (a) `tau=rxxF=|(hati, hatj, hatk),(6,3,-2),(2,3,-1)|`
`=hati(-3+6)-hatj(-6+4)_hatk(18-6)`
`=tau=(3hati+2hatj+12hatk)Nm`
18.

If the three vectors are coplanar, then find `x`. `A=hati-2hatj+3hatk, B=xhatj+3hatk, C=7hati+3hatj-11hatk`A. `36//21`B. `-51//32`C. `51//32`D. `-36//21`

Answer» (b) The three vectors are coplanar, if their scalar tripler product is zero.
i.e. `A.(BxxC)=0=|(1, -2, 3),(0, x, 3),(7, 3, -11)|=0`
`(1)[-x(11)-9=+2(0-21)+3(0-7x)=0`
`-11x-9-42-21x=0implies-32x-51=0impliesx=- 51/32`
19.

The three conterminous edges of parallelopiped are `a=2hati-6hatj+3hatk, b=5hatj,c=-2hati+hatk` Calculate the volumeof parallelopipedA. 36 cubic unitsB. 45 cubic unitsC. 40 cubic unitsD. 54 cubic units

Answer» (c) Volume `V=a.(bxxc)=|(2, -6, 3),(0, 5, 0),(-2, 0, 1)|`
`=2(5-0)+6(0)+3(+10)=10+30=40` cubic units.
20.

Find the values of `x` and `y` for which vectors `A=(6hati+xhatj-2hatk)` and `B(5hati-6hatj-yhatk)` are be parallelA. `x-=0, y=2/3`B. `x=-36/5,y=5/3`C. `x=-15/3, y=23/5`D. `x=36/5, y=15/4`

Answer» (b) Condition for parallel vectors `AxxB=0`
`=|(hati, hatj, hatk),(6, x, -2), (5, -6, y)|=0`
`-hati(-xy-12)-hatj(-6y+10)+hatk(-36-5x)=0`
or `xy=-12, +6y=10-36=5ximpliesx=-36/5,y=5/3`
21.

Find the component of vector A+B along i. X-axis, ii. C. Given, `A=hat(i)-2hat(j)+3hat(k)andC+hat(i)+hat(j).`A. `3,(1)/(sqrt(2))`B. `2,(3)/(sqrt(2))`C. `5,(2)/(3)`D. `4.1, (2)/(sqrt(2))`

Answer» `(a) A+B=(hat(i)-2hat(j))+(2hat(i)+3hat(j))=3hat(i)-2hat(j)+3hat(k)`
i. Component of A+B along X -axis is 3.
ii. Component of A+B=R (say) along C is
`:. R*C=RC cos theta`
`Rcostheta+(R*C)/C=((31hati-2hat(j)+3hat(k))*(hati+hat(j)))/sqrt((1)^(2)+(1)^(2))`
`=(3-2)/(sqrt(2))=(1)/(sqrt(2))`
22.

Given that `P+Q+R=0`. Which of the following statement is true?A. `|P|+|Q|=|R|`B. `|P+Q|=|R|`C. `|P|-|Q|+|R|`D. `|P-Q|=|R|`

Answer» Correct Answer - B
if` P+Q+R=0,`
then `|P+Q|=|R|`
23.

At what angle should the two forces 2P and `sqrt(2P)` and `Psqrt(2)P` act so that resultant force is `Psqrt(10)`?A. `45^(@)`B. `60^(@)`C. `90^(@)`D. `120^(@)`

Answer» Correct Answer - A
(a) `Psqrt(10)=sqrt(4P^(2)+2P^(2)+4sqrt(2)P^(2)costheta)`
:. `theta=45^(@)`
24.

What are minmum number or unequal fores whose vector sum is zero ?A. twoB. threeC. fourD. Any

Answer» Correct Answer - B
(b) Minimum three forces of unequal magnitude are required to make vector sum equal to zero.
25.

`vec(P)+vec(Q)` is a unit vector along x-axis. If `vec(P)= hat(i)-hat(j)+hat(k)`, then what is `vec(Q)`?A. `hat(i)+hat(j)-hat(k)`B. `hat(j)-hat(k)`C. `hat(i)+hat(j)+hat(k)`D. `hat(j)+hat(k)`

Answer» Correct Answer - B
(b) Given `P+1=hat(i)-hat(j)+hat(k)`
and `P+Q=hat(i)-hat(i)+hat(j)+hat(k)=hat(j)-hat(k)`
26.

If `a_(1) and a_(2)` aare two non- collineaar unit vectors and if `|a_(1)+a_(2)|=sqrt(3),` ,then value of `(a_(1)-a_(2)).(2a_(1)-a_(2))` isA. 2B. `(3)/(2)`C. `(1)/(2)`D. 1

Answer» Correct Answer - B
(b) Since, `a_(1)anda_(2)` are non-collinear
`:.a_(1)=a_(2)=1`
` "and "|a_(1)+a_(2)|=sqrt(3)`
`rArra_(1)^(2)+a_(2)^(2)+2a_(1)a_(2)costheta=(sqrt(3))^(2)`
`rArr1+1+2costheta=3`
`rArrcostheta=(1)/(2)`
Now, `(a_(1)-a_(2)).(2a_(1)-a_2)=2a_(1)^(2)-a_(1).a_(2)-2a_(1).a_(2)+a_(2)^(2)`
`=2a_(1)^(2)+a_(2)^(2)-3a_(1)a_(2)costheta`
`=2+1-(3)/(2)=3//2`
27.

The expression `(1/(sqrt(2))hat(i)+1/(sqrt(2))hat(j))` is aA. unit vectorB. null vectorC. vector of magnitude `sqrt(2)`D. scalar

Answer» Correct Answer - A
(a) Let `A=(1)/(sqrt(2))hat(i)+(1)/(sqrt(2))hat(j)`
`|A|=sqrt(((1)/(sqrt(2)))^(2)+((1)/(sqrt(2)))^(2))=sqrt((2)/(2))=1`
As, the magnitude of given vector is 1
`:.` It is a unit vector.
28.

The value of `hat(i)xx(hat(i)xxa)+hat(j)xx(hat(j)xxa)+hat(k)xx(hat(k)xxa)` isA. aB. `axxhat(k)`C. `-2a`D. `-a`

Answer» Correct Answer - C
(c) Suppose, `a=a_(1)hat(i)+a_(2)hat(j)+a_(3)hat(k)`
Now, `(hat(i)xxa)=a_(2)hat(k)-a_(3)hat(j)`
Now `hat(i)xx(hat(i)xxa)=-a_(2)hat(j)-a_(3)hat(k)`
Similarly, `hat(i)xx(hat(j)xxhat(a))=-a_(1)hat(i)-a_(3)hat(k)`
and `hat(k)xx(hat(j)xxa)=-a_(1)hat(i)-a_(2)hat(j)`
`:.hat(i)(hat(i)xxa)+hat(j)(hat(j)xxa)+hat(k)(hat(k)xxa)=-2a`
29.

The area of the parallenlogram determined by two adjacentt sides as `A=2hat(i)+hat(j)-3hat(k)andB=12hat(j)-2hat(k)` is approximatelyA. 43B. 56C. 38D. 74

Answer» Correct Answer - A
(a) Area of parallelogram `=|AxxB|`
`AxxB=|{:(hat(i),hat(j),hat(k)),(2,1,-3),(0,12,-2):}|`
` =hat(i)(-2+36)-hat(j)(-4)+hat(k)(24)`
`=34hat(i)+4hat(j)+24hat(k)`
`|AxxB|=sqrt((34)^(2)+(4)^(2)+(24)^(2))`
`=418~~43`
30.

What is the angle between `vec(P)` and the resultant of `(vec(P)+vec(Q))` and `(vec(P)-vec(Q))` ?A. zeroB. `tan^(-1)(P//Q)`C. `tan^(-1)(Q//P)`D. `tan^(-1)(P-Q)//(P+Q)`

Answer» Correct Answer - A
(a) Resultant of `(P+Q) and (P-Q) is P+Q+P-Q or 2P` which is parallel to P.
So, angle between P and 2P will be zero.
31.

For the resultant of two vectors to be maximum , what must be the angle between them ?A. `0^(@)`B. `60^(@)`C. `90^(@)`D. `90^(@)`

Answer» Correct Answer - A
(a) Resultant of two vectors will be maximum when they are parallel,i.e., angle between them is zero.
32.

Find the torque of a force `F=-3hat(i)+2hat(j)+hat(k)` acting at the point `r=8hat(i)+2hat(j)+3hat(k),(iftau=rxxF)`A. `14hat(i)-38hat(j)+16hat(k)`B. `4hat(i)+4hat(j)+6hat(k)`C. `-14hat(i)+38hat(j)-16hat(k)`D. `-4hat(i)-17hat(j)+22hat(k)`

Answer» Correct Answer - D
(d) Torque of the force, `tau=rxxF`
`tau=|{:(hat(i),hat(j),hat(k)),(8,2,3),(-3,2,1):}|`
`=hat(i)(2-6)-hat(j)(8+9)+hat(k)(16+6)`
`=-4hat(i)-17hat(j)+22hat(k)`
33.

The condition `(a.b)^(2)=a^(2)b^(2)` is satisfied whenA. a is paraller to bB. `aneb`C. `a.b=1`D. `abotb`

Answer» Correct Answer - A
(a) `(a.b)^(2)=a^(2)b^(2)cos^(2)theta=a^(2)b^(2)`
`:.theta=0^(@)`
`rArr` a is parallel to b.
34.

Given `A=hat(i)+hat(j)+hat(k)andB=-hat(i)-hat(j)-hat(k)` then (A-B) will make angle with AA. `0^(@)`B. `180^(@)`C. `90^(@)`D. `60^(@)`

Answer» Correct Answer - A
(a) `A-B=(hat(i)+hat(j)+hat(k))-(-hat(i)-hat(j)-hat(k))`
`=(2hat(i)+2hat(j)+2hat(k)=2A)`
i.e., A - B and A are parallel.
35.

If two vectors are equal and their resultant is also equal to one of them, then the angle between the two vectors isA. `60^(@)`B. `120^(@)`C. `90^(@)`D. `0^(@)`

Answer» Correct Answer - B
(b) We have ,`R=A=B`
`:.R^(2)=R^(2)+R^(2)+2R Rcostheta`
`"or "costheta=-(1)/(2)`
`:.theta=120^(@)`
36.

If three vectors along coordinate axes represent the adjacent sides of a cubie of length `b`, then the unit vector along its diagonal passing through the origin will beA. `(hati+hatj+hatk)/(sqrt(2))`B. `(hati+hatj+hatk)/(sqrt(3)b)`C. `hati+hatj+hatk`D. `(hati+hatj+hatk)/(sqrt(3))`

Answer» (d) Diagonal vector `A=bhati+bhatj+bhatk`
or `A=sqrt(b^(2)+b^(2)+b^(2))=sqrt(3)b` ltbrrgt `:. hatA=A/A=(hati+hatj+hatk)/(sqrt(3))`
37.

If three vectors along coordinate axis represent the adjacent sides of a cube of length b, then the unit vector along its diagonal passing through the origin will beA. `(hat(i)+hat(j)+hat(k))/(sqrt(2))`B. `(hat(i)+hat(j)+hat(k))/(sqrt(36))`C. `hat(i)+hat(j)+hat(k)`D. `(hat(i)+hat(j)+hat(k))/(sqrt(3))`

Answer» Correct Answer - D
(d) Diagonal vector, `A=bhat(i)+bhat(j)+bhat(k)`
` "or "A=sqrt(b^(2)+b^(2)+b^(2))=sqrt(3)b`
`:.A=(A)/|A|=(hat(i)+hat(j)+hat(k))/(sqrt(3))`
38.

The modulus of the vector product of two vectors is `(1)/(sqrt(30))` times their scalar product. The angle between vectors isA. `(pi)/(6)`B. `(pi)/(2)`C. `(pi)/(4)`D. `(pi)/(3)`

Answer» Correct Answer - A
(a) `ABsintheta=(1)/(sqrt(3))ABcostheta`
`:.tantheta=(1)/(sqrt(3))ortheta=30^(@)=(pi)/(6)`
39.

If the sum of two unit vectors is a unit vector, then magnitude of difference is-A. `sqrt(2)`B. `sqrt(3)`C. `1//sqrt(2)`D. `sqrt(5)`

Answer» Correct Answer - B
(b)Sum of two unit vectors is a unit vector, means angle between those two unit vectors is `120^(@)`
`:.|S|=sqrt(1+1-2xx1xx1xxcos120^(@))=sqrt(3)`
40.

A vector `vecF_(1)` is along the positive `X`-axis. If its vectors product with another vector `vecF_(2)` is zero then `vecF_(2)` could beA. `4hatj`B. `(hatk+hatj)`C. `(hatj+hatk)`D. `-4hati`

Answer» (d) Let `F_(1)=xhati`
As, `F_(1)xxF_(2)=0` and only `hatixxhati=0`
`:. F_(2)=-4hati`
41.

The component of vector `A=a_(x)hati+a_(y)hatj+a_(z)hatk` and the directioin of `hati-hatj` isA. `a_(x)-a_(y)+a_(z)`B. `a_(x)-a_(y)`C. `(a_(x)-a_(y))//sqrt(2)`D. `(a_(x)+a_(y)+a_(z))`

Answer» (c) Let `B=hati-hatj`
Then component of vector `A` along `B=(A.B)/(|B|)`
`=((a_(x)hati+a_(y)hatj+a_(z)hatk).(hati-hatj))/(|hati-hatj|)=(a_(x)-a_(y))/(sqrt(2))`
42.

The unit vector perpendicular to vectors `a=3hati+hatj` and `=2hati-hatj-5hatk` isA. `+-((hati-3hatj+hatk))/(sqrt(11))`B. `+-(3hati+hatj)/(sqrt(11))`C. `+-((2hati-hatj-5hatk))/(sqrt(30))`D. none of these

Answer» (a) `a=3hati+hatj` and `b=2hati-hatj-5hatk`
`axxb=|(hati, hatj, hatk),(3,1,0),(2,-1,-5)|=(-5)hati-(-15-0)hatj+(-3-2)hatk`
`=-5hati+15hatj-5hatk`
`R=axxb=-5(hati-3hatj+hatk)`
`hatR=(hati-3hatj+hatk)/(sqrt((1)^(2)+(-3)^(2)+(1)^(2)))=(hati-3hatj+hatk)/(sqrt(11))`
43.

If a particle is moving on an parallel path given by `r=b cos omegat hati+asinomegat hatj`, then find its radial acceleration along `r`A. `omega r`B. `omega^(2)r`C. `-omega^(2)r`D. none of these

Answer» (a) `(dr)/(dt)=-bomegat sin hati+aomega cos omegat hatj`
`(d^(2)r)/(dt^(2))=-bomega^(2) sin omegat hati+aomega^(2) cos omegat hatj`
`(d^(2)r)/(dt^(2))=-omega^(2) [b cos omegat hati+a sin omegat hatj]=-omega^(2)r`
44.

If three vectors `xa-2b+3c, -2a+yb-4c` and `-zb+3c` are coplanar, where `a,b` and `c` are unit (or any) vectors thenA. `xy+3zx-3z=4`B. `2xy-3zx-3z-4=0`C. `4xy-3zx-3z=4`D. `xy-2zx-3z-4=0`

Answer» (d) Condition of coplanarity, `|(x,-2,3),(-2,y,-4),(0,-z,3)|=0`
`impliesx(2-4z)+2(-4-0)+3(2z-0)=0`
`implies2xy-4zx-8+6z=0` ltbrrgt `impliesxy-2zx-4+3z=0`
45.

In the given figure `O` is the centre of regular pentagon `ABCDE`. Five forces each of magnitude `F_(0)` are acted as shown in figure. The resultant force is A. `5F_(0)`B. `5F_(0) cos 72^(@)`C. `5F_(0) sin 72^(@)`D. zero

Answer» (d) According to polygon law, resultant force will be zero.