InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
If A = {2, 3, 5, 7,11} and B = {5, 7, 9, 11, 13}, find A ∆ B. |
|
Answer» A ∆ B = {2, 3, 9, 13} |
|
| 2. |
(i) If n(A) = 25, n(B) = 40, n(A ∪ B) = 50 and n(B’) = 25, find n(A ∩ B) and n(U).(ii) If n(A) = 300, n(A ∪ B) = 500, n(A ∩ B) = 50 and n(B’) = 350, find n(B) and n(U). |
|
Answer» (i) n(A ∩ B) = n(A) + n(B) – n(A ∪ B) n(A ∩ B) = 25 + 40 – 50 = 65 – 50 = 15 n(U) = n(B) + n(B’) = 40 + 25 = 65 (ii) n(U) = n(B) + n(B’) n(A ∩ B) = n(A) + n(B) – n(A B) n(B) = n(A ∪ B) + n(A ∩ B) – n(A) = 500 + 50 – 300 = 250 n(U) = 250 + 350 = 600 |
|
| 3. |
If U = {x : x ∈ N and x < 10}, A = {1, 2, 3, 5, 8} and B = {2, 5, 6, 7, 9}, then n[(A ∪ B)’] is (1) 1 (2) 2 (3) 4 (4) 8 |
|
Answer» (1) 1 U = {1, 2, 3, 4, 5, 6, 7, 8, 9} A = {1, 2, 3, 5, 8} B = {2, 5, 6, 7, 9} A ∪ B = {1, 2, 3, 5, 6, 7, 8, 9} (A ∪ B)’ = {4}, n(A ∪ B)’ = 1 |
|
| 4. |
Which of the following is true? (1) A – B = A ∩ B (2) A – B = B – A (3) (A ∪ B)’ = A’ ∪ B’ (4) (A ∩ B)’ = A’ ∪ B’ |
|
Answer» (4) (A ∩ B)’ = A’ ∪ B’ (1) (A – B) = A ∩ B ✘ (2) A – B = B – A ✘ (3) (A ∪ B) = A’ ∪ B’ ✘ (4) (A ∩ B)’ = A’ ∪ B’ ✓ |
|
| 5. |
If A ∪ B = A ∩ B, then (1) A ≠ B (2) A = B (3) A ⊂ B (4) B ⊂ A |
|
Answer» Answer is (2) A = B |
|
| 6. |
In a class of 50 boys, 35 boys play carom and 20 boys play chess then the number of boys play both games is (1) 5 (2) 30 (3) 15(4) 10 |
|
Answer» (1) 5 n(A ∪ B) = n(A) + n(B) – n(A n B) ⇒ 50 = 35 + 20 – n(A ∩ B) ⇒ n(A ∩ B) = 5 |
|
| 7. |
From the adjacent diagram n[P(A ∆ B)] is (1) 8 (2) 16 (3) 32 (4) 64 |
|
Answer» (3) 32 A ∆ B = {60, 85, 75, 90, 70} ⇒ n(A ∆ B) = 5 ⇒ n(P(A ∆ B)) = 25 = 32 |
|
| 8. |
If n(A) = 10 and n(B) = 15 then the minimum and maximum number of elements in A ∩ B is (1) (10, 15) (2) (15, 10) (3) (10, 0) (4) (0, 10) |
|
Answer» Answer is (4) (0, 10) |
|
| 9. |
For any three sets P, Q and R, P – (Q ∩ R) is (1) P – (Q ∪ R) (2) (P ∩ Q) – R (3) (P – Q) ∪ (P – R) (4) (P – Q) ∩ (P – R) |
|
Answer» (3) (P – Q) ∪ (P – R) P – (Q ∩ R) = (P – Q) ∪ (P – R) |
|
| 10. |
Verify n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C) for the following sets. (i) A = {a, c, e, f, h}, B = {c, d, e, f} and C = {a, b, c, f} (ii) A = {1, 3, 5}, B = {2, 3, 5, 6} and C = {1, 5, 6, 7}. |
|
Answer» n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C) (i) A = {a, c, e, f, h}, B = {c, d, e, f}, C = {a, b, c, f} n (A) = 5, n (B) = 4, n (C) = 4 n( A ∩ B) = 3 n(B ∩ C) = 2 n( A ∩ C) = 3 n( A ∩ B ∩ C) = 2 A ∩ B = {c, e, f} B ∩ C = {c, f} A ∩ C = {a, c, f} A ∩ B ∩ C = {c, f} A ∪ B ∪ C = {a, c, d, e, f, b, h} ∴ n(A ∪ B ∪ C) = 7 … (1) n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C) = 5 + 4 + 4 – 3 – 2 – 3 + 2 = 15 – 8 = 7 … (2) ∴ (1) = (2) ⇒ n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C) Hence it is verified. (ii) A = {1, 3, 5}, B = {2, 3, 5, 6 }, C = {1, 5, 6,7} = 3 n (B) = 4, n (C) = 4 n(A ∩ B) = 2 n(B ∩ C) = 2 n(C ∩ A) = 2 n(A ∩ B ∩ C) = 1 n(A ∪ B ∪ C) = 6 n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C) 6 = 3 + 4 + 4 – 2 – 2 – 2 + 1 = 12 – 6 = 6 Hence it is verified. |
|
| 11. |
If B – A is B, then A ∩ B is (1) A (2) B (3) U (4) Ø |
|
Answer» (4) Ø B – A = B ⇒ A and B are disjoint sets. |
|
| 12. |
If K = {a, b, d, e,f}, L = {b, c, d, g} and M = {a, b, c, d, h} then find the following:(i) K ∪ (L ∩ M)(ii) K ∩ (L ∪ M)(iii) (K ∪ L) ∩ (K ∪ M)(iv) (K ∩ L) ∪ (K ∩ M) and verify distributive laws. |
|
Answer» K = {a, b, d, e, f}, L = {b, c, d, g} and M = {a, b, c, d, h} (i) K ∪ (L ∩ M) L ∩ M = {b, c, d, g} ∩ {a, b, c, d, h} = {b, c, d} K ∪ (L ∩ M) = {a, b, d, e, f } ∪ {b, c, d) = {a, b, c, d, e, f} (ii) K ∩ (L ∪ M) L ∪ M = {a, b, c, d, g, h} K ∩ (L ∪ M) = {a, b, d, e, f} ∩ {a, b, c, d, g, h} = {a, b, d} (iii) (K ∪ L) ∩ (K ∪ M) K ∪ L = {a, b, c, d, e, f, g} K ∪ M = {a, b, c, d, e, f, h} (K ∪ L) ∩ (K ∪ M) = {a, b, c, d, e,f} (iv) (K ∩ L) ∪ (K ∩ M) (K ∩ L) = {b, d} (K ∩ M) = {a,b,d} (K ∩ L) ∪ (K ∩ M) = {b, d} ∪ {a, b, d} = {a, b, d} Distributive laws K ∪ (L ∩ M) = (K ∪ L) ∩ (K ∪ M) {a, b, c, d, e, f) = {a, b, c, d, e, f, g} ∩ {a, b, c, d, e, f, h} = {a, b, c, d, e, f} Thus Verified. K ∩ (L ∪ M) = (K ∩ L) ∪ (K ∩ M) {a, b, d} = {a, b, c, d, e, f, g} ∪ {a, b, c, d, e, f, h} = {a, b, d} Thus Verified. |
|
| 13. |
Let A = {Ø} and B = P(A) then A ∩ B is (1) {Ø, {Ø}}(2) {Ø} (3) Ø(4) {0} |
|
Answer» (2) {Ø} P(A) = {Ø {Ø}} |
|
| 14. |
If A = {x : x = 2n, n ∈ W and n < 4}, B = {x : x = 2 n, n ∈ N and n ≤ 4} and C = {0, 1, 2, 5, 6}, then verify the associative property of intersection of sets. |
|
Answer» A = {x : x = 2n, n ∈ W, n < 4} ⇒ x = 20 = 1 x = 21 = 2 x = 22 = 4 x = 23 = 8 ∴ A = {1, 2, 4, 8} B = {x : x = 2n, n ∈ N and n ≤ 4} ⇒ x = 2 x 1 = 2 x = 2 x 2 = 4 x = 2 x 3 = 6 x = 2 x 4 = 8 ∴ B = {2, 4, 6, 8} C = {0, 1, 2, 5, 6} Associative property of intersection of set A ∩ (B ∩ C) = (A ∩ B) ∩ C B ∩ C = {2, 6} A ∩ (B ∩ C) = {1, 2, 4, 8} ∩ {2, 6} = {2} … (1) A ∩ B = {1, 2, 4, 8} ∩ {2, 4, 6, 8} = {2, 4, 8} (A ∩ B) ∩ C = {2, 4, 8} ∩ {0, 1, 2, 5, 6} = {2} … (2) From (1) and (2), It is verified that A ∩ (B ∩ C) = (A ∩ B) ∩ C |
|
| 15. |
Find A ∪ B, A ∩ B, A – B and B – A for the following sets.(i) A = {2, 6, 10, 14} and B = {2, 5, 14, 16}(ii) A = {a, b, c, e, u} and B = {a, e, i, o, u}(iii) A = {x : x ∈ N, x ≤ 10} and B = {x : x ∈ W, x < 6}(iv) A = Set of all letters in the word “mathematics” and B = Set of all letters in the word “geometry” |
|
Answer» (i) A = {2, 6, 10, 14} and B = {2, 5, 14, 16} A ∪ B = {2, 6, 10, 14} ∪ {2, 5, 14, 16} = {2, 5, 6, 10, 14, 16} A ∩ B = {2, 6, 10, 14} ∩ {2, 5, 14, 16} = {2, 14} A – B = {2, 6, 10, 14} – {2, 5, 14, 16} = {6, 10} B – A = {2, 5, 14, 16} – {2, 6, 10, 14} = {5, 16} (ii) A = {a, b, c, e, u} and B = {a, e, i, o, u} A ∪ B = {a, b, c, e, u} ∪ {a, e, i, o, u} = {a, b, c, e, i, o, u} A ∩ B = {a, b, c, e, u} ∩ {a, e, i, o, u} {a, e, u} A – B = {a, b, c, e, u} – {a, e, i, o, u} = {b, c} B – A = {a, e, i, o, u} – {a, b, c, e, u} = {i, o} (iii) x ∈ {1, 2, 3, ...}; x ∈ {0, 1, 2, 3, 4, 5, ...} A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} B = {0, 1, 2, 3, 4, 5} A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ∪ {0, 1, 2, 3, 4, 5} = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} A ∩ B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ∩ {0, 1, 2, 3, 4, 5} = {1, 2, 3, 4, 5} A – B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} – {0, 1, 2, 3, 4, 5} = {6, 7, 8, 9, 10} B – A = {0, 1, 2, 3, 4, 5} – {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} = {0} (iv) A= {m, a, t, h, e, i, c, s}, B = {g, e, o, m, t, r, y} A ∪ B = {m ,a, t, h, e, i, c, s} ∪ {g, e, o, m, t, r, y} = {m, a, t, h, e, i, c, s, g, o, r, y) A ∩ B = {m, a, t, h, e, i, c, s} ∩ {g, e, o, m, t,r,y} = {m, t, e} A – B = {m ,a, t, h, e, i, c, s} ∪ {g, e, o, m, t, r, y} = {a, h, i, c, s} B – A = {m, a, t, h, e, i, c, 5} ∩ {g, e, o, m, t,r,y} = {g,o, r, y} |
|
| 16. |
If U = {4, 7, 8, 10, 11, 12, 15, 16}, A = {7, 8, 11, 12} and B = {4, 8, 12, 15}, then verify De Morgan’s Laws for complementation. |
|
Answer» U = {4, 7, 8, 10, 11, 12, 15, 16} A = {7, 8, 11, 12}, B = {4, 8, 12, 15} De Morgan’s Laws for complementation. (A ∪ B)’ = A’ ∩ B’ A ∪ B = {4, 7, 8, 11, 12, 15} (A ∪ B)’ = {4, 7, 8, 10, 11, 12, 15, 16} – {4, 7, 8, 11, 12, 15} = {10, 16} … (1) A’ = {4, 10, 15, 16} B’ = {7, 10, 11, 16} A’ ∩ B’ = {10, 16} … (2) From (1) and (2) it is verified that (A ∪ B)’ = A’ ∩ B’ |
|
| 17. |
If A = {x : x ∈ Z, -2 < x ≤ 4}, B = {x : x ∈ W, x ≤ 5}, C = {-4, -1, 0, 2, 3, 4}, then verify A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). |
|
Answer» A = {x : x ∈ Z, -2 < x ≤ 4} = {-1, 0, 1, 2, 3, 4} B = {x : x ∈ W, x ≤ 5} = {0, 1, 2, 3, 4, 5} C = {-4, -1, 0, 2, 3, 4} A ∪ (B ∩ C) B ∩ C = {0, 1, 2, 3, 4, 5} ∩ {-4, -1, 0, 2, 3, 4} = {0, 2, 3, 4} A ∪ (B ∩ C) = {-1, 0, 1, 2, 3, 4} ∪ {0, 2, 3, 4} = {-1, 0, 1, 2, 3, 4} … (1) (A ∪ B) ∩ (A ∪ C) A ∩ B = {0, 1, 2, 3, 4} A ∩ C = {-1, 0, 2, 3, 4} (A ∩ B) ∪ (A ∩ C) = {0, 1, 2, 3, 4} ∪ {-1, 0, 2, 3, 4} = {-1, 0, 1, 2, 3, 4} … (2) From (1) and (2), it is verified that A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) |
|
| 18. |
If A = {b, c, e, g, h}, B = {a, c, d, g, i} and C = {a, d, e, g, h}, then show that A – (B ∩ C) = (A – B) ∪ (A – C). |
|
Answer» A = {b, c, e, g, h} B = {a, c, d, g, i} C = {a, d, e, g, h} B ∩ C = {a, d, g} A – (B ∩ C) = {b, c, e, g, h} – {a, d, g} = {b, c, e, h} … (1) A - B = {b, c, e, g, h} – {a, c, d, g, i} = {b, e, h} A – C = {b, c, e, g, h} – {a, d, e, g, h} = {b, c} (A – B) ∪ (A – C) = {b, c, e, h} … (2) From (1) and (2) it is verified that A – (B ∩ C) = (A – B) ∪ (A – C) |
|
| 19. |
If A = {2, 5, 6, 7} and B = {3, 5, 7, 8}, then verify the commutative property of (i) union of sets (ii) intersection of sets |
|
Answer» Given, A = {2, 5, 6, 7} and B = {3, 5, 7, 8} (i) A ∪ B = {2, 3, 5, 6, 7, 8} … (1) B ∪ A = {2, 3, 5, 6, 7, 8} … (2) From (1) and (2) we have A ∪ B = B ∪ A It is verified that union of sets is commutative. (ii) A n B = {5, 7} … (3) B n A = {5, 7} … (4) From (3) and (4) we get, A ∩ B = B ∩ A It is verified that intersection of sets is commutative. |
|
| 20. |
Find the union of the following sets. (i) A = {1, 2, 3, 5, 6} and B = {4, 5, 6, 7, 8} (ii) X = {3, 4, 5} and Y = Ø |
|
Answer» (i) A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8} (ii) X ∪ Y = {3, 4, 5} |
|
| 21. |
If A = {p, q, r, s}, B = {m, n, q, s, t} and C = {m, n, p, q, s}, then verify the associative property of union of sets. |
|
Answer» Associative Property of union of sets A ∪ (B ∪ C) = (A ∪ B) ∪ C) B ∪ C = {m, n, q, s, t} ∪ {m, n, p, q, s} = {m, n, p, q, s, t} A ∪ (B ∪ C) = {p, q, r, s} ∪ {m, n, p, q, s, t} = {m, n, p, q, r, s, t} … (1) (A ∪ B) = {p, q, r, s} ∪ {m, n, q, s, t} = {p, q, r, s, m, n, t} (A ∪ B) ∪ C = {p, q, r, s, m, n, t} ∪ {m, n, p, q, s} = {p, q, r, s, m, n, t} ... (2) From (1) & (2) It is verified that A ∪ (B ∪ C) = (A ∪ B) ∪ C |
|
| 22. |
Using the given venn diagram, write the elements of(i) A(ii) B(iii) A ∪ B(iv) A ∩ B(v) A – B(vi) B – A(vii) A’(viii) B’(ix) U |
|
Answer» (i) A = {2, 4, 7, 8, 10} (ii) B = {3, 4, 6, 7, 9, 11} (iii) A ∪ B = {2, 3, 4, 6, 7, 8, 9, 10, 11} (iv) A ∩ B = {4, 7} (v) A – B = {2, 8, 10} (vi) B – A = {3, 6, 9, 11} (vii) A’ = {1, 3, 6, 9, 11, 12} (viii) B’ = {1, 2, 8, 10, 12} (ix) U = {1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12}. |
|
| 23. |
If P = {x : x ∈ N and 1 < x < 11}, Q = {x : x = 2n, n ∈ N and it < 6} and R = {4, 6, 8, 9, 10, 12}, then verify P – (Q ∩ R) = (P – Q) ∪ (P – R). |
|
Answer» The roster form of sets P, Q and R are P = {2, 3, 4, 5, 6, 7, 8, 9, 10}, Q = {2, 4, 6, 8, 10} and R = {4, 6, 8, 9, 10, 12} First, we find Q ∩ R = {4, 6, 8, 10} Then, P – (Q ∩ R) = {2, 3, 5, 7, 9} … (1) Next, P – Q = {3, 5, 7, 9} and P – R = {2, 3, 5, 7} And so, (P – Q) ∪ (P – Q) = {2, 3, 5, 7, 9} ... (2) Hence from (1) and (2), it verified that P – (Q ∩ R) = (P – Q) ∪ (P – R) Finding the elements of set Q Given, x = 2n n = 1 → x = 2(1) = 2 n = 2 → x = 2(2) = 4 n = 3 → x = 2(3) = 6 n = 4 → x = 2(4) = 8 n = 5 → x = 2(5) = 10 Therefore, x takes values such as 2, 4, 6, 8, 10 |
|
| 24. |
Test for the commutative property of union and intersection of the sets P = {x : x is a real number between 2 and 7} and Q = {x : x is an irrational number between 2 and 7} |
|
Answer» Commutative Property of union of sets (A ∪ B)’ = (B ∪ A) Here P = {3, 4, 5, 6}, Q = {√3, √5, √6} P ∪ Q = {3, 4, 5, 6} ∪ {√3, √5, √6} = {3, 4, 5, 6, √3, √5, √6} ... (1) Q ∪ P = {√3, √5, √6} ∪ {3, 4, 5, 6} = {√3, √5, √6, 3, 4, 5, 6} … (2) (1) = (2) ∴ P ∪ Q = Q ∪ P ∴ It is verified that union of sets is commutative. Commutative Property of intersection of sets (P ∩ Q) = (Q ∩ P) P ∩ Q = {3, 4, 5, 6} ∩ {√3, √5, √6} = { } … (1) Q ∩ P = {√3, √5, √6} ∩ {3, 4, 5, 6} = { } … (2) From (1) and (2) P ∩ Q = Q ∩ P ∴ It is verified that intersection of sets is commutative. |
|
| 25. |
If P = {1, 2, 5, 7, 9}, Q = {2, 3, 5, 9, 11}, R = {3, 4, 5, 7, 9} and S = {2, 3, 4, 5, 8}, then find (i) (P ∪ Q) ∪ R (ii) (P ∩ Q) ∩ S (iii) (Q ∩ S) ∩ R |
|
Answer» (i) (P ∪ Q) ∪ R (P ∪ Q) = {1, 2, 5, 7, 9} ∪ {2, 3, 5, 9, 11} = {1, 2, 3, 5, 7, 9, 11} (P ∪ Q) ∪ R = {1, 2, 3, 5, 7, 9, 11} ∪ {3, 4, 5, 7, 9} = {1, 2, 3, 4, 5, 7, 9, 11} (ii) (P ∩ Q) ∩ S (P ∩ Q) = {1, 2, 5, 7, 9} ∩ {2, 3, 5, 9, 11} = {2, 5, 9} (P ∩ Q) ∩ S = {2, 5, 9} ∩ {2, 3, 4, 5, 8} = {2, 5} (iii) (Q ∩ S) ∩ R (Q ∩ S) = {2, 3, 5, 9, 11} ∩ {2, 3, 4, 5, 8} = {2, 3, 5} (Q ∩ S) ∩ R = {2, 3, 5} ∩ {3, 4, 5, 7, 9} = {3, 5} |
|
| 26. |
If A = {a, {a, b}}, write all the subsets of A. |
|
Answer» A = {a, {a, b}} subsets of A are { } {a}, {a, b}, {a, {a, b}}. |
|
| 27. |
If A = {x, y, z} then the number of non-empty subsets of A is (1) 8 (2) 5 (3) 6 (4) 7 |
|
Answer» (4) 7 Number of non-empty subsets = 2 – 1 = 8 = 8 – 1 = 7 |
|
| 28. |
Let U = {0, 1, 2 , 3, 4, 5, 6, 7}, A = {1, 3, 5, 7} and B = {0, 2, 3, 5, 7}, find the following sets.(i) A’(ii) B’(iii) A‘ ∪ B’(iv) A’ ∩ B’(v) (A ∪ B)’(vi) (A ∩ B)’(vii) (A’)’(viii) (B’)’ |
|
Answer» (i) A’ = U – A = {0, 1 ,2, y, 4, 5, 6, 7} – {1, 3, 5, 7} = {0, 2, 4, 6} (ii) B’ = U – B = {0, 1, 2, 3, 4, 5, 6 ,7} – {0, 2, 3, 5, 7} = {1, 4, 6} (iii) A’ ∪ B’ = {0, 2, 4, 6} ∪ {1, 4, 6} = {0, 1, 2, 4, 6} (iv) A’ ∩ B’ = {0, 2, 4, 6} ∩ {1, 4, 6} = {4, 6} (v) (A ∪ B)’ = U – (A ∪ B) = {0, 1, 2, 3, 4, 5, 6, 7} – {0, 1, 2, 3, 5, 7} = {4, 6} (vi) (A ∩ B)’ = U – (A ∩ B) = {0, 1, 2, 3, 4, 5, 6, 7} – {3,5,7} = {0, 1, 2, 4, 6} (vii) (A’)’ = U – A’ = {0, 1, 2, 3, 4, 5, 6, 7} – {0, 2, 4, 6} = {1, 3, 5, 7} (viii) (B’)’ = U – B’ = {0, 1, 2, 3, 4, 5, 6, 7} – {1, 4, 6} = {0, 2, 3, 5, 7}. |
|
| 29. |
Represent the following sets in descriptive form.(i) P = {January, June, July}(ii) Q = {7, 11, 13, 17, 19, 23, 29}(iii) R = {x : x ∈ N, x < 5}(iv) S = {x : x is a consonant in English alphabets} |
|
Answer» (i) P is the set of English Months beginning with J. (ii) Q is the set of all prime numbers between 5 and 31. (iii) R is the set of all natural numbers less than 5. (iv) S is the set of all English consonants. |
|
| 30. |
Identify the following sets as finite or infinite.(i) X = The set of all districts in Tamilnadu.(ii) Y = The set of all straight lines passing through a point.(iii) A = {x : x ∈ Z and x < 5}(iv) B = {x : x2 – 5x + 6 = 0, x ∈ N} |
|
Answer» (i) Finite set (ii) Infinite set (iii) A = { ... , -2, -1, 0, 1, 2, 3, 4} ∴ Infinite set (iv) x2 – 5x + 6 = 0 (x – 3) (x – 2) = 0 B = {3, 2} ∴ Finite set. |
|
| 31. |
Find the number of subsets and the number of proper subsets of the following sets.(i) W = {red,blue, yellow}(ii) X = {x2 : x ∈ N, x2 ≤ 100}. |
|
Answer» (i) Given W = {red, blue, yellow} Then n(W) = 3 The number of subsets = n[P(W)] = 23 = 8 The number of proper subsets = n[P(W)] – 1 = 23 – 1 = 8 – 1 = 7 (ii) Given X = {1,2,3, } X2 = {1, 4, 9, 16, 25, 36, 49, 64, 81, 100} n(X) = 10 The Number of subsets = n[P(X)] = 210 = 1024 The Number of proper subsets = n[P(X)] – 1 = 210 – 1 = 1024 – 1 = 1023. |
|
| 32. |
Fill in the blanks with appropriate cardinal numbers. |
|||||||||||||||||||||||||||||||||||
Answer»
|
||||||||||||||||||||||||||||||||||||
| 33. |
State whether the following sets are finite or infinite. (i) A = {x : x is a multiple of 5, x ∈ N}. (ii) B = {0, 1, 2, 3, 4, 75}. (iii) The set of all positive integers greater than 50. |
|
Answer» (i) A = {5, 10, 15, 20, …… } ∴ A is an infinite set (ii) Finite (iii) Let X be the set of all positive integers greater than 50 Then X = {51, 52, 53, ….. } ∴ X is an infinite set. |
|
| 34. |
State which of the following sets are disjoint. (i) A = {2, 4, 6, 8}, B = {x : x is an even number < 10, x ∈ N} (ii) X = {1, 3, 5, 7, 9}, Y = {0, 2, 4, 6, 8, 10} (iii) R = {a, b, c, d, e}, S = {d, e, b, c, a} |
|
Answer» (i) A = {2, 4, 6, 8}, B = {2, 4, 6, 8} A ∩ B = {2, 4, 6, 8} ≠ Ø ∴ A and B are not disjoint sets. (ii) X ∩ Y = { } = Φ, X and Y are disjoint sets. (iii) R ∩ S = {a, b, c, d, e} ≠ Ø ∴ R and S are not disjoint sets. |
|
| 35. |
Find the cardinal number of the following sets. (i) A = {x : x is a prime factor of 12}. (ii) B = {x : x ∈ W, x ≤ 5}.(iii) X = {x : x is an even prime number} |
|
Answer» (i) Factors of 12 are 1, 2, 3, 4, 6, 12. So, the prime factors of 12 are 2, 3. We write the set A in roster form as A = {2, 3} and hence n(A) = 2. (ii) In Tabular form B = {0, 1, 2, 3, 4, 5} The set B has six elements and hence n(B) = 6 (iii) X = {2} [2 is the only even prime number] ∴ n (X) = 1 |
|
| 36. |
The set P = {x | x ∈ Z, -1 < X < 1} is a (1) Singleton set (2) Power set (3) Null set (4) Subset |
|
Answer» (1) Singleton set P = {0} |
|
| 37. |
Identify the following sets as null set or singleton set.(i) A = (x : x ∈ N, 1 < x < 2}(ii) B = The set of all even natural numbers which are not divisible by 2.(iii) C = {0}(iv) D = The set of all triangles having four sides. |
|
Answer» (i) A = { } ∵ There is no element in between 1 and 2 in Natural numbers. ∴ Null set (ii) B = { } ∵ All even natural numbers are divisible by 2. ∴ B is Null set (iii) C = {0} ∴ Singleton set (iv) D = { } ∵ No triangle has four sides. ∴ D is a Null set. |
|