

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
101. |
The value of $(\sqrt[3]{3.5}+\sqrt[3]{2.5})\left\{(\sqrt[3]{3.5})^{2}-\sqrt[3]{8.75}+(\sqrt[3]{2.5})^{2}\right\}$ is :1). 5.3752). 13). 64). 5 |
Answer» 1 SEEMS CORRECT. | |
102. |
The greatest of $\sqrt{2}$ ,$\sqrt[6]{3}$,$\sqrt[3]{4}$,$\sqrt[4]{5}$ is1). $\sqrt{2}$2). $\sqrt[6]{3}$3). $\sqrt[3]{4}$4). $\sqrt[4]{5}$ |
Answer» | |
103. |
$2+\frac{6}{\sqrt{3}}+\frac{1}{2+\sqrt{3}}+\frac{1}{\sqrt{3}-2}$ is equal to :1). $+(2\sqrt{3})$2). $-(2+\sqrt{3})$3). 14). 2 |
Answer» 2 : - OPTION 4 | |
104. |
If $\sqrt{5329}$ = 73, then the value $\sqrt{5329}+\sqrt{53.29}+\sqrt{0.5329}+\sqrt{0.005329}+\sqrt{0.00005329}$ is :1). 81.10032). 81.01133). 81.11034). 811013 |
Answer» $73 + 7.3 + 0.73 + 0.073 + 0.0073 = 81.1103$ |
|
105. |
If $\sqrt{3}$ = 1.732 is given , then the value of $\frac{2+\sqrt{3}}{2-\sqrt{3}}$ is :1). 11.7322). 13.9283). 12.9284). 13.925 |
Answer» 13.928 is the ANSWER |
|
106. |
Evaluate : $6\sqrt{\frac{3}{4}}-9\sqrt{\frac{4}{3}}$ , If $\sqrt{12}$=3.461). 3.462). 10.383). 13.844). 24.22 |
Answer» | |
107. |
Given that $\sqrt{5}$ =2.236 and $\sqrt{3}$ =1.732,the value of $\frac{1}{\sqrt{5}+\sqrt{3}}$ is1). 0.5042). 0.2523). 0.3624). 0.372 |
Answer» OPTION 2 : 0.252 is CORRECT | |
108. |
Given that $\sqrt{5}$ =2.24, then the value of $\frac{3\sqrt{5}}{2\sqrt{5}-0.48}$ is1). 0.1682). 1.683). 16.84). 168 |
Answer» 1.68 is the ANSWER |
|
109. |
The value of $\frac{\sqrt{72}\times \sqrt{363}\times \sqrt{175}}{\sqrt{32}\times \sqrt{147}\times \sqrt{252}}$ is :1). $\frac{55}{42}$2). $\frac{45}{56}$3). $\frac{45}{28}$4). $\frac{55}{28}$ |
Answer» | |
110. |
Given that $\sqrt{3}$ =1.732, then the value of $\frac{3 + \sqrt{6}}{5\sqrt{3}-2\sqrt{12}-\sqrt{32}+\sqrt{50}}$ is :1). 4.8992). 2.5513). 1.4144). 1.732 |
Answer» it from previous YEAR ssc papers, OPTION 4 is the RIGHT answer |
|
111. |
$(64)^{-\frac{2}{3}}\times \left(\frac{1}{4}\right)^{-2}$is equal to :1). 12). 23). $\frac{1}{2}$4). $\frac{1}{16}$ |
Answer» RIGHT ANSWER is 1 | |
112. |
$\frac{0.3555\times 0.5555\times 2.025}{0.225\times 1.7775\times02222}$ is equal to :1). 5.42). 4.583). 4.54). 5.45 |
Answer» | |
113. |
If $\sqrt{7}$ = 2.646, then the value of $\frac{1}{\sqrt{28}}$ upto three places of decimal is :-1). 0.1832). 0.1853). 0.1874). 0.189 |
Answer» This QUESTION was asked some where in previous year papers of SSC, and correct ANSWER was option 4 |
|
114. |
The value of$\left[\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}-\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\right]$1). $\sqrt{111}$2). 93). 74). 11 |
Answer» OPTION option 3 is the CORRECT ANSWER | |
115. |
$\left[\sqrt[3]{2}\times \sqrt{2}\times \sqrt[3]{3}\times \sqrt{3}\right]$ is equal to1). $6^{5}$2). $6^{\frac{5}{6}}$3). 64). None of these |
Answer» | |
116. |
$\left[\frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{5}}+\frac{1}{\sqrt{2}-\sqrt{3}-\sqrt{5}}\right]$ in simplified form equals to :1). 12). $\sqrt{2}$3). $\frac{1}{\sqrt{2}}$4). 0 |
Answer» | |
117. |
$(0.04)^{-1.5}$ on simplification gives :1). 252). 1253). 2504). 625 |
Answer» CORRECT ANSWER is: 125 | |
118. |
$(0.01024)^{\frac{1}{5}}$ is equal to :1). 4.02). 0.043). 0.44). 0.00004 |
Answer» | |
119. |
If a = $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ , b = $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$, then the value of $\frac{a^{2}}{b}+\frac{b^{2}}{a}$ is :1). 10302). 10253). 9704). 930 |
Answer» OPTION 3 : - 1025 | |
120. |
If $\frac{(x-\sqrt{24})(\sqrt{75}+\sqrt{50})}{\sqrt{75}-\sqrt{50}}$=1 , then the value of x is1). $\sqrt{5}$2). 53). $2\sqrt{5}$4). $3\sqrt{5}$ |
Answer» This QUESTION was asked some where in previous YEAR papers of SSC, and CORRECT answer was option 2 |
|
121. |
$\frac{2.3\times 2.3\times 2.3-1}{23\times 2.3+ 2.3+1}$ is equal to :1). 1.32). 3.33). 0.34). 2.2 |
Answer» | |
122. |
The greatest among the numbers $3\sqrt{2}$,$3\sqrt{7}$,$6\sqrt{5}$,$2\sqrt{20}$, is:1). $3\sqrt{2}$2). $3\sqrt{7}$3). $6\sqrt{5}$4). $2\sqrt{20}$ |
Answer» RIGHT ANSWER is $3\sqrt{7}$ | |
123. |
Simplified form of $\left[\left(\sqrt[5]{x^{\frac{-3}{5}}}\right)^{\frac{-5}{3}}\right]^{5}$ is :1). $x^{5}$2). $x^{-5}$3). x4). $\frac{1}{x}$ |
Answer» it from previous YEAR SSC PAPERS, $x^{-5}$ is the right ANSWER |
|
124. |
(6.5 x 6.5 - 45.5 + 3.5 x 3.5) is equal to :1). 102). 93). 74). 6 |
Answer» 9 | |
125. |
Simplify : $\frac{0.05\times 0.05\times 0.05- 0.04\times 0.04\times 0.04}{0.05 \times 0.05 + 0.002 +0.04\times 0.04}$1). 12). 0.13). 0.014). 0.001 |
Answer» OPTION 3 is the RIGHT ANSWER | |
126. |
The greatest of the following numbers 0.16,$\sqrt{0.16}$,$(0.16)^{2}$, 0.04 is :1). 0.162). $\sqrt{0.16}$3). 0.044). $(0.16)^{2}$ |
Answer» This QUESTION was asked some where in previous year PAPERS of ssc, and CORRECT ANSWER was option 2 |
|
127. |
[8.7 x 8.7 + 2 x 8.7 x 1.3 + 1.3 x 1.3] is equal to :1). 1.692). 103). 75.694). 100 |
Answer» OPTION 4 : - 100 | |
128. |
$\left[\frac{(0.73)^{3} +(0.27)^{3}}{(0.73)^{2} + (0.27)^{2} -(0.73) \times (027)}\right]$ simplifies to1). 12). 0.40873). 0.734). 0.27 |
Answer» ANSWER for this QUESTION is 1 | |
129. |
The value of $\frac{(243)^{0.13}\times (243)^{0.07}}{(7)^{0.25}\times (49)^{0.075}\times (343)^{0.2}}$1). $\frac{3}{7}$2). $\frac{7}{3}$3). $1\frac{3}{7}$4). $2\frac{2}{7}$ |
Answer» HELLO, $\FRAC{3}{7}$ is CORRECT | |
130. |
The total number of prime factors in $4^{10}+7^{3}+16^{2}+11+10^{2}$ is :-1). 342). 353). 364). 37 |
Answer» OPTION 3 : SEEMS CORRECT | |
131. |
The square root of $\left(\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\right)$ is :1). $\sqrt{3}+\sqrt{2}$2). $\sqrt{3}-\sqrt{2}$3). $\sqrt{2}\pm\sqrt{3}$4). $\sqrt{2}-\sqrt{3}$ |
Answer» | |
132. |
A rationalising factor of $(\sqrt[3]{9}-\sqrt[3]{3}+1)$ is :1). $\sqrt[3]{3}-1$2). $\sqrt[3]{3}+1$3). $\sqrt[3]{9}+1$4). $\sqrt[3]{9}-1$ |
Answer» RIGHT ANSWER for this QUESTION is OPTION 2 | |
133. |
The rationalising factor of $3\sqrt{3}$ is :1). $\frac{1}{3}$2). 33). -34). $\sqrt{3}$ |
Answer» OPTION 4 : - $\SQRT{3}$ | |
134. |
The number of prime factors in $6^{333}\times 7^{222}\times 8^{111}$1). 12212). 12223). 11114). 1211 |
Answer» | |
135. |
By how much does $5\sqrt{7}-2\sqrt{5}$ exceed $3\sqrt{7}-4\sqrt{5}$1). $5(\sqrt{7}+\sqrt{5})$2). $\sqrt{7}+\sqrt{5}$3). $2(\sqrt{7}+\sqrt{5})$4). $7(\sqrt{2}+\sqrt{5})$ |
Answer» ANSWER for this QUESTION is $\SQRT{7}+\sqrt{5}$ | |
136. |
If $\frac{\sqrt{7}-1}{\sqrt{7}+1}-\frac{\sqrt{7}+1}{\sqrt{7}-1}$ = $a+\sqrt{7}b$,then the values of a and b are respectively1). $\sqrt{7}$ , -12). $\sqrt{7}$ , 13). 0, $-\frac{2}{3}$4). $-\frac{2}{3}$, 0 |
Answer» $\sqrt{7}$ , 1 is the CORRECT ANSWER as PER the ssc answer key |
|
137. |
The value of $\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+.........+\frac{1}{\sqrt{8}+\sqrt{9}}$1). 12). 03). 24). $\sqrt{2}$ |
Answer» 0 : OPTION 3 is the CORRECT ANSWER | |
138. |
The value of $\frac{(0.67\times 0.67\times 0.67)-(0.33\times 0.33\times 0.33)}{(0.67\times 0.67)-(0.67\times 0.33)-(0.33\times 0.33)}$is1). 112). 1.13). 3.44). 0.34 |
Answer» HELLO, 0.34 is CORRECT | |
139. |
$(256)^{0.16}\times (4)^{0.36}$ is equal to :1). 642). 163). 256.254). 4 |
Answer» ANSWER for this QUESTION is OPTION 4 | |
140. |
The value of $\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}+.........+\frac{1}{\sqrt{100}+\sqrt{99}}$ is :1). 12). 93). $\sqrt{99}$4). $\sqrt{99}-1$ |
Answer» | |
141. |
The value of $\frac{64 - 0.008}{16 + 0.8 + 0.04}$ is :1). 22). 3.83). 0.64). 4.2 |
Answer» $ \LARGE \FRAC{64-0.008}{16+0.8+0.04} $ =$ \Large \frac{ \left(4\right)^{3}- \left(0.2\right)^{2}}{ \left(4\right)^{2}+4 \TIMES 0.2+ \left(0.2\right)^{2}} $ =$ \Large \frac{ \left(4-0.2\right) \left(4^{2}+0.2^{2}+4 \times 0.2\right)}{4^{2}+4 \times 0.2+0.2^{2}} $ =$ \Large 4-0.2=3.8 $ |
|
142. |
$2\sqrt[3]{34}-3\sqrt[3]{4}+\sqrt[3]{500}$ is equal to1). $4\sqrt[3]{6}$2). $3\sqrt{24}$3). $6\sqrt[3]{4}$4). 916 |
Answer» $3\sqrt{24}$ |
|
143. |
Simplify : $\frac{5.32\times 56 + 5.32\times 44}{(7.66)^{2}-(2.34)^{2}}$1). 7.22). 8.53). 104). 12 |
Answer» This question was ASKED some where in PREVIOUS year papers of ssc, and correct ANSWER was OPTION 3 |
|
144. |
$\frac{3+\sqrt{6}}{5\sqrt{3}-2\sqrt{12}-\sqrt{32}+\sqrt{50}}$ is equal to1). 32). $\sqrt{3}$3). $3\sqrt{2}$4). $2\sqrt{3}$ |
Answer» | |
145. |
$\frac{(3.06)^{3}-(1.98)^{3}}{(3.06)^{2} + 3.06\times 1.98 + (1.98)^{2}}$is equal to :1). 1.082). 5.043). 2.164). 1.92 |
Answer» OPTION 1 : 1.08 is CORRECT | |
146. |
$\frac{137\times 137+133\times 133+18221}{137\times 137\times 137-133\times 133\times 133}$ is equal to :1). 42). 2703). $\frac{1}{4}$4). $\frac{1}{270}$ |
Answer» 270 : SEEMS CORRECT | |
147. |
The value of $(3+2\sqrt{2})^{-3}+ (3-2\sqrt{2})^{-3}$ is :1). 1892). 1803). 1084). 198 |
Answer» 198 SEEMS CORRECT. | |
148. |
Let $\sqrt[3]{a}$ = $\sqrt[3]{26}+\sqrt[3]{7}+\sqrt[3]{63}$ , then1). a < 729 but a > 2162). a < 2163). a > 7294). a = 729 |
Answer» CORRECT answer is: a < 729 but a > 216 | |
149. |
Thc greatest one of $\sqrt{4}$ ,$\sqrt[3]{4}$,$\sqrt[4]{6}$ and $\sqrt[6]{8}$ is1). $\sqrt{3}$2). $\sqrt[3]{4}$3). $\sqrt[4]{6}$4). $\sqrt[6]{8}$ |
Answer» it from previous YEAR ssc PAPERS, $\sqrt{3}$ is the RIGHT ANSWER |
|
150. |
Among $\sqrt{2}$ ,$\sqrt[3]{3}$ , $\sqrt[4]{5}$ , $\sqrt[3]{2}$, which one is greatest 1). $\sqrt[4]{5}$2). $\sqrt{2}$3). $\sqrt[3]{3}$4). $\sqrt[3]{2}$ |
Answer» OPTION 1 is the RIGHT ANSWER | |