

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
151. |
A man is bom in the year 1896 A.D. If In the year $x^{2}$ A.D. , his age is x- 4, the value of x is1). 402). 443). 364). 42 |
Answer» | |
152. |
The value of $\sqrt{72+\sqrt{72+\sqrt{72+.....}}}$ is1). 92). 83). 184). 12 |
Answer» CORRECT ANSWER is: OPTION 1 | |
153. |
$(36)^{\frac{1}{6}}$ is equal to :1). 12). 63). $\sqrt{6}$4). $\sqrt[3]{6}$ |
Answer» it from previous YEAR SSC papers, $\SQRT[3]{6}$ is the right answer |
|
154. |
If $3^{x+3}=27^{2x+1}$ , then the value of x is1). 72). 33). -24). 1 |
Answer» | |
155. |
If $(2000)^{10}$=$1.024\times 10^{k}$., then the value of k is1). 332). 303). 344). 31 |
Answer» $(2^4 × 5^3)^{10} = 1024 × 10^{(k-3)}$ $2^{40} × 5^{30} = 2^{10} × 10^{k-3}$ $2^{10} × 2^{30} × 5^{30} = 2^{10} × 10^{k-3}$
$2^30 × 5^30 = 10^{k - 3}$ 10^30 = 10^{(k-3)}
As the base is same on both SIDES , 30 = k-3 k = 33 |
|
156. |
$\sqrt{30+\sqrt{30+\sqrt{30+.....}}}$ is equal to1). 52). $3\sqrt{10}$3). 64). 7 |
Answer» CORRECT ANSWER is: OPTION 3 | |
157. |
The smallest among the numbers $2^{250}$ , $3^{150}$, $5^{100}$, and$4^{200}$1). $4^{200}$2). $5^{100}$3). $3^{150}$4). $2^{250}$ |
Answer» | |
158. |
0.75 x 7.5 - 2 x 7.5 x 0.25 + 0.25 x 2.5 is equal to :1). 2502). 25003). 2.54). 25 |
Answer» | |
159. |
The number, which when multiplies with $(\sqrt{3}+\sqrt{2})$ gives $(\sqrt{12}+\sqrt{18})$ is :1). $3\sqrt{2}-2\sqrt{3}$2). $3\sqrt{2}+2\sqrt{3}$3). $\sqrt{6}$4). $2\sqrt{3}-3\sqrt{2}$ |
Answer» CORRECT ANSWER is: OPTION 3 | |
160. |
A tap is dripping at a constant rate into a container.The level (L cm) of the water in the container is given by the equation L =$2^{t}$ where t is time taken in hours. Then the level of water in the container at the start is1). 0 cm2). 1 cm3). 2 cm4). 4 cm |
Answer» CORRECT ANSWER is: OPTION 2 | |
161. |
The greatest among the numbers $\sqrt{0.09}$,$\sqrt[3]{0.064}$, 0.5 and$\frac{3}{5}$ is :1). $\sqrt{0.09}$2). $\sqrt[3]{0.064}$3). 0.54). $\frac{3}{5}$ |
Answer» | |
162. |
What to the product of the roots of the equation $x^{2}-\sqrt{3}$=0 1). $+\sqrt{3}$2). $\sqrt{3}i$3). $-\sqrt{3}i$4). $+\sqrt{3}$ |
Answer» it from PREVIOUS YEAR SSC papers, $+\sqrt{3}$ is the right ANSWER |
|
163. |
$\sqrt{12+\sqrt{12+\sqrt{12+.....}}}$ is equal to1). 32). 43). 64). 2 |
Answer» | |
164. |
The value of the expression $\sqrt{6+\sqrt{6+\sqrt{6+....upto...}}}$ is :1). 52). 33). 24). 30 |
Answer» | |
165. |
If m and n (n>l) are whole numbers such that $m^{n}$ =121.the value of $(m-1)^{n+1}$ is1). 12). 103). 1214). 1000 |
Answer» OPTION 4 is the RIGHT ANSWER | |
166. |
The value of $\sqrt{2\sqrt[3]{4\sqrt{2\sqrt[3]{4\sqrt{2\sqrt[3]{4...........}}}}}}$ is :1). 22). $2^{2}$3). $2^{3}$4). $2^{5}$ |
Answer» RIGHT ANSWER for this QUESTION is OPTION 1 | |
167. |
The simplified value of $(0.2)^{3}\times 200+ 2000 of (0.2)^{2}$is1). $\frac{1}{100}$2). $\frac{1}{50}$3). $\frac{1}{10}$4). 1 |
Answer» | |
168. |
$9\sqrt{x}$=$\sqrt{12}+\sqrt{147}$ , then x=1). 52). 33). 24). 4 |
Answer» | |
169. |
If a= $\frac{\sqrt{3}}{2}$ , then the value of $\sqrt{1+a}+\sqrt{1-a}$1). $\sqrt{3}$2). $\frac{\sqrt{3}}{2}$3). $2+\sqrt{3}$4). $2-\sqrt{3}$ |
Answer» CORRECT ANSWER is: $\SQRT{3}$ | |
170. |
If x y are rational numbers and $\frac{5+\sqrt{11}}{3-2\sqrt{11}}$= $x+y\sqrt{11}$The values of x and y are1). x=$\frac{-14}{17}$ , y=$\frac{-13}{26}$2). x=$\frac{4}{13}$ , y=$\frac{11}{17}$3). x=$\frac{-27}{25}$ , y=$\frac{-11}{37}$4). x=$\frac{-37}{35}$ , y=$\frac{-13}{35}$ |
Answer» it from PREVIOUS YEAR SSC PAPERS, option 4 is the RIGHT answer |
|
171. |
If a= $\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and b = $\frac{\sqrt{5}-1}{\sqrt{5}+1}$ , the value of $\left(\frac{a^{2}+ab+b^{2}}{a^{2}-ab+b^{2}}\right)$ is1). $\frac{3}{4}$2). $\frac{4}{3}$3). $\frac{3}{5}$4). $\frac{5}{3}$ |
Answer» | |
172. |
If $0.42\times 100^{k}$ = 42 , then the value of k is1). 42). 23). 14). 3 |
Answer» ANSWER for this QUESTION is 2 | |
173. |
Simplify : $\left(\frac{\frac{3}{2+\sqrt{3}}-\frac{2}{2-\sqrt{3}}}{2-5\sqrt{3}}\right)$1). $\frac{1}{2}-5\sqrt{3}$2). $2-5\sqrt{3}$3). 14). 0 |
Answer» OPTION 3 is the RIGHT ANSWER | |
174. |
The value of $\frac{(243)^{\frac{n}{5}}\times 3^{2n+1}}{9^{n}\times 3^{n-1}}$ is1). 32). 93). 64). 12 |
Answer» 9 | |
175. |
If $3^{x+y}$=81 and $81^{x-y}$=3, then the value of x is1). 422). $\frac{15}{8}$3). $\frac{17}{8}$4). 39 |
Answer» OPTION 3 : SEEMS CORRECT | |
176. |
If $\sqrt{2}$ = 1.414 : Find the value of $2\sqrt{2}+\sqrt{2}+\frac{1}{2+\sqrt{2}}+\frac{1}{\sqrt{2}-2}$1). 1.41442). 2.82843). 28.2844). 2.4142 |
Answer» OPTION 2 : 2.8284 is CORRECT | |
177. |
The value of $(3+2\sqrt{2})^{-3}+(3-2\sqrt{2})^{-3}$ is :1). 1982). 1803). 1084). 189 |
Answer» OPTION 1 is the RIGHT ANSWER | |
178. |
$\sqrt{1+\sqrt{1+\sqrt{1+.....}}}$1). equals 12). lies between 0 and 13). lies between 1 and 24). is greater than 2 |
Answer» LIES between 0 and 1 SEEMS CORRECT. | |
179. |
If $\sqrt{2}$ = 1.4142.... is given , then the value of $\frac{7}{(3+\sqrt{2)}}$correct upto two decimal places is :1). 1.592). 1.603). 2.584). 2.57 |
Answer» ANSWER for this QUESTION is OPTION 1 | |
180. |
$\left\{(-2)^{(-2)}\right\}^{(-2)}$ is equal to :1). 162). 83). -84). -1 |
Answer» OPTION 1 : - 16 | |
181. |
The simplified form of $(16^{\frac{3}{2}}+16^{\frac{-3}{2}})$ is :1). 02). $\frac{4097}{64}$3). 14). $\frac{16}{4097}$ |
Answer» | |
182. |
$8^{\frac{2}{3}}$ is equal to :1). $5\frac{1}{2}$2). $21\frac{1}{3}$3). 44). $3\frac{1}{3}$ |
Answer» OPTION 3 : - $21\frac{1}{3}$ | |
183. |
The value of $\frac{3\sqrt{2}}{\sqrt{3}+\sqrt{6}}-\frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}}$ is1). 42). 03). $\sqrt{2}$4). $3\sqrt{6}$ |
Answer» | |
184. |
What is the value of $\frac{2.75\times 2.75\times 2.75-2.25\times 2.25\times 2.25}{2.75\times 2.75+ 2.75\times 2.25+2.25\times 2,25}$is1). 32). $\frac{3}{2}$3). 14). $\frac{1}{2}$ |
Answer» ANSWER for this QUESTION is $\FRAC{1}{2}$ | |
185. |
When $(4 +\sqrt{7})$ is presented in the form of perfect square It will be equal to1). $(2+\sqrt{7})^{2}$2). $\left(\frac{\sqrt{7}}{2}+\frac{1}{2}\right)^{2}$3). $\left\{\frac{1}{\sqrt{2}}(\sqrt{7}+1)\right\}^{2}$4). $(\sqrt{3}+\sqrt{4})^{2}$ |
Answer» OPTION 3 is the CORRECT answer as PER the answer key | |
186. |
If $2^{x}$=$3^{y}$=$6^{z}$ , then $\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)$ is equal to1). 02). 13). $\frac{3}{3}$4). $-\frac{1}{2}$ |
Answer» OPTION 1 is the RIGHT ONE | |
187. |
The value of $\frac{(75.8)^{2}-(35.8)^{2}}{40}$is1). 121.62). 403). 1604). 111.6 |
Answer» ANSWER for this QUESTION is 111.6 | |
188. |
$4^{61}+4^{62}+4^{63}+4^{64}$ is divisible by1). 172). 33). 114). 13 |
Answer» it from previous YEAR SSC papers, OPTION 1 is the RIGHT answer |
|
189. |
Simplify ; $\left[\sqrt[3]{\sqrt[6]{5^{9}}}\right]^{4}$1). $5^{2}$2). $5^{4}$3). $5^{8}$4). $5^{12}$ |
Answer» RIGHT ANSWER for this QUESTION is $5^{4}$ | |
190. |
The exponential form of $\sqrt{\sqrt{2}\times \sqrt{3}}$is1). 62). $6^{\frac{1}{2}}$3). $6^{-\frac{1}{2}}$4). $6^{\frac{1}{4}}$ |
Answer» it from previous YEAR ssc PAPERS, $6^{\frac{1}{4}}$ is the right ANSWER |
|
191. |
The value of $\frac{1}{\sqrt{(12-\sqrt{140})}}-\frac{1}{\sqrt{(8-\sqrt{60})}}-\frac{2}{\sqrt{10+\sqrt{84}}}$ is1). 02). 13). 24). 3 |
Answer» 0 : - is CORRECT HENCE OPTION 1 | |
192. |
If $5\sqrt{5}\times 5^{3}+5^{-\frac{3}{2}}$=$5^{a+2}$ ,then the value of a is1). 42). 53). 64). 8 |
Answer» it from PREVIOUS year SSC papers, OPTION 1 is the right answer |
|
193. |
If $\sqrt{33}$ = 5.745. then the value of $\sqrt{\frac{3}{11}}$ is approximately1). 12). 0.52233). 6.324). 2.035 |
Answer» This question was asked some where in PREVIOUS YEAR PAPERS of SSC, and correct ANSWER was option 2 |
|
194. |
The value of : $\sqrt{-\sqrt{3}+\sqrt{3+8\sqrt{7+4\sqrt{3}}}}$1). 12). 23). 34). 8 |
Answer» 2 | |
195. |
$\frac{\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+\sqrt{225}}}}}}{\sqrt[3]{8}}$ = 1). 42). 23). 84). $\frac{1}{2}$ |
Answer» 2 : SEEMS CORRECT | |
196. |
Arrange the followtngin descending orders : $\sqrt[3]{4}$ ,$\sqrt{2}$,$\sqrt[6]{3}$, $\sqrt[4]{5}$1). $\sqrt[3]{4}$ > $\sqrt[4]{5}$ > $\sqrt{2}$ > $\sqrt[6]{3}$2). $\sqrt[4]{5}$ >$\sqrt[3]{4}$ > $\sqrt[6]{3}$ >$\sqrt{2}$3). $\sqrt{2}$ > $\sqrt[6]{3}$> $\sqrt[3]{4}$ > $\sqrt[4]{5}$4). $\sqrt[4]{5}$ >$\sqrt[3]{4}$ > $\sqrt[3]{4}$ > $\sqrt{2}$ |
Answer» I am not SURE, may be $\sqrt[3]{4}$ > $\sqrt[4]{5}$ > $\sqrt{2}$ > $\sqrt[6]{3}$ is CORRECT |
|
197. |
$\frac{\sqrt{5}}{\sqrt{3}+\sqrt{2}}-\frac{3\sqrt{3}}{\sqrt{5}+\sqrt{2}}+\frac{2\sqrt{2}}{\sqrt{5}+\sqrt{3}}$ is equal to :1). 02). $2\sqrt{15}$3). $2\sqrt{10}$4). $2\sqrt{6}$ |
Answer» RIGHT ANSWER for this QUESTION is 0 | |
198. |
If $3^{2x-y}$=$3^{x+y}$=$\sqrt{27}$. then the value of $3^{x-y}$ will be1). 32). $\frac{1}{\sqrt{3}}$3). $\sqrt{3}$4). $\frac{1}{\sqrt{27}}$ |
Answer» | |
199. |
The unit digit in the product $(2467)^{155}\times (341)^{72}$ is1). 72). 33). 94). 1 |
Answer» 7 is the ANSWER | |
200. |
$\frac{3\sqrt{2}}{\sqrt{6}+\sqrt{3}}-\frac{2\sqrt{6}}{\sqrt{3}+1}+\frac{2\sqrt{3}}{\sqrt{6}+2}$ is equal to1). 32). 23). 04). $\sqrt{3}$ |
Answer» This question was asked some where in previous year PAPERS of SSC, and correct ANSWER was option 3 |
|