

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
201. |
If a = $7-4\sqrt{3}$ , then the value of $a^{\frac{1}{2}}+a^{-\frac{1}{2}}$ is :1). $3\sqrt{7}$2). 43). 74). $2\sqrt{3}$ |
Answer» | |
202. |
$(125)^{\frac{2}{3}}\times (625)^{-\frac{1}{4}}$=$5^{x}$ , then the value of x is1). 32). 23). 04). 1 |
Answer» | |
203. |
The value of $\frac{(1.5)^{3} + (4.7)^{3} + (3.8)^{3}-3\times 1.5\times 4.7 \times 3.8}{(1.5)^{2} + (4.7)^{2} + (3.8)^{2} - 1.5\times 4.7 -4.7\times 3.8-3.8\times 1.5}$is :1). 02). 13). 104). 30 |
Answer» RIGHT ANSWER is 1 | |
204. |
If m = $\sqrt{5+\sqrt{5+\sqrt{5+.....}}}$ and n = $\sqrt{5-\sqrt{5-\sqrt{5-.....}}}$ , then among the following the relation between m and n holds is1). m-n + 1 =02). m+n - 1 =03). m+n + 1 =04). m-n - 1 =0 |
Answer» OPTION 4 is the CORRECT ANSWER as per the answer KEY | |
205. |
The largest number among$\sqrt{2}$, $\sqrt[3]{3}$,$\sqrt[4]{4}$ is :1). $\sqrt{2}$2). $\sqrt[3]{3}$3). $\sqrt[4]{4}$4). AU are equal |
Answer» OPTION 2 : SEEMS CORRECT | |
206. |
Given that $\sqrt{2}$ = 1.414 : the value of $\frac{1}{\sqrt{2}+1}$is1). 0.4142). 2.4143). 3.4144). 5.414 |
Answer» | |
207. |
The smallest of $\sqrt{8}+\sqrt{5}$,$\sqrt{7}+\sqrt{6}$,$\sqrt{10}+\sqrt{3}$ and $\sqrt{11}+\sqrt{2}$ is :1). $\sqrt{8}+\sqrt{5}$2). $\sqrt{7}+\sqrt{6}$3). $\sqrt{10}+\sqrt{3}$4). $\sqrt{11}+\sqrt{2}$ |
Answer» ANSWER for this QUESTION is OPTION 4 | |
208. |
The mean of $1^{3}$,$2^{3}$,$3^{3}$,$4^{3}$,$5^{3}$,$6^{3}$,$7^{3}$ is1). 202). 1123). 564). 28 |
Answer» | |
209. |
$(16)^{0.16}\times (16)^{0.04}\times (2)^{0.2}$ is equal to :1). 12). 23). 44). 16 |
Answer» | |
210. |
The quotient when $10^{100}$ is divided by $5^{75}$ is1). $2^{25}\times 10^{75}$2). $10^{25}$3). $2^{75}$4). $2^{75}\times 10^{25}$ |
Answer» CORRECT ANSWER is: $2^{75}\TIMES 10^{25}$ | |
211. |
$\sqrt{6+\sqrt{6+\sqrt{6+.....}}}$ is equal to1). 32). 43). 54). 6 |
Answer» OPTION 1 is the RIGHT ANSWER | |
212. |
The value of $\sqrt{5+2\sqrt{6}}-\frac{1}{\sqrt{5+2\sqrt{6}}}$ is :1). $2\sqrt{2}$2). $2\sqrt{3}$3). $1+4\sqrt{5}$4). $\sqrt{5}-1$ |
Answer» it from previous year SSC papers, OPTION 1 is the RIGHT ANSWER |
|
213. |
If the product of first fifty positive consecutive integers be divisible by $7^{n}$. where n is an Integer. then the largest possible value of n is1). 72). 83). 104). 5 |
Answer» | |
214. |
Simplify $\frac{1}{\sqrt{100}-\sqrt{99}}-\frac{1}{\sqrt{99}-\sqrt{98}}+\frac{1}{\sqrt{98}-\sqrt{97}}-\frac{1}{\sqrt{97}-\sqrt{96}}+......+\frac{1}{\sqrt{2}-\sqrt{1}}$1). 02). 93). 104). 11 |
Answer» ANSWER for this QUESTION is OPTION 4 | |
215. |
Which of the following la closest to $\sqrt{3}$1). $\frac{9}{5}$2). 1.753). $\frac{173}{100}$4). 1.69 |
Answer» OPTION 3 : 1.75 is CORRECT | |
216. |
If $27^{2x-1}=(243)^{3}$ , then the value of x is1). 32). 63). 74). 9 |
Answer» ANSWER for this QUESTION is 3 | |
217. |
Simplify : $\left[64^{\frac{2}{3}}\times 2^{-2}+8^{0}\right]^{\frac{1}{2}}$1). 02). 13). 24). $\frac{1}{2}$ |
Answer» | |
218. |
Arranging the following in ascending order $3^{34}$,$2^{51}$,$7^{17}$ , we get1). $3^{34}$ > $2^{51}$ > $7^{17}$2). $7^{17}$ > $2^{51}$ > $3^{34}$3). $3^{34}$ > $7^{17}$ > $2^{51}$4). $2^{51}$ > $3^{34}$ > $7^{17}$ |
Answer» $3^{34}$ > $2^{51}$ > $7^{17}$ : - is correct hence option 1 |
|
219. |
If $\left(\frac{3}{4}\right)^{3}\left(\frac{4}{3}\right)^{-7}$=\left(\frac{3}{4}\right)^{2x} , then x is :1). -22). 23). 54). $2\frac{1}{2}$ |
Answer» | |
220. |
$\sqrt{2+\sqrt{2+\sqrt{2+.....}}}$ is equal to1). $\sqrt{2}$2). $2\sqrt{2}$3). 24). 3 |
Answer» OPTION 3 is the correct ANSWER as per the answer KEY | |
221. |
The value of $ [(0.87)^{2}+(0.13)^{2}(0.87)\times (0.26)]^{2013}$ is1). 02). 20133). 14). -1 |
Answer» | |
222. |
Solve for x: $3^{x}-3^{x-1}$ = 486.1). 72). 93). 54). 6 |
Answer» This question was asked some where in previous YEAR PAPERS of SSC, and CORRECT ANSWER was option 4 |
|
223. |
$\left[\frac{\sqrt{3}+1}{\sqrt{3}-1}+\frac{\sqrt{2}+1}{\sqrt{2}-1}+\frac{\sqrt{3}-1}{\sqrt{3}+1}+\frac{\sqrt{2}-1}{\sqrt{2}+1}\right]$ is simplified to1). 102). 123). 144). 18 |
Answer» RIGHT ANSWER for this QUESTION is 10 | |
224. |
If x= $1+\sqrt{2}+\sqrt{3}$ then the value of $\left(x+\frac{1}{x-1}\right)$ is1). $1+2\sqrt{3}$2). $2+\sqrt{3}$3). $3+\sqrt{2}$4). $2\sqrt{3}-1$ |
Answer» ANSWER for this QUESTION is OPTION 1 | |
225. |
The simplified form of $\frac{1}{\sqrt{7}+\sqrt{5}}+\frac{1}{\sqrt{12}-\sqrt{5}}+\frac{1}{\sqrt{12}-\sqrt{7}}$ is :1). 52). 23). 14). 0 |
Answer» 0 : OPTION 4 is the CORRECT ANSWER | |
226. |
If $2^{x-1}+2^{x+1}$ = 320, then the value of x is1). 62). 83). 54). 7 |
Answer» | |
227. |
$\sqrt{8-2\sqrt{15}}$ is equal to1). $\sqrt{5}+\sqrt{3}$2). $5-\sqrt{3}$3). $\sqrt{5}-\sqrt{3}$4). $3-\sqrt{5}$ |
Answer» This question was asked some where in previous YEAR PAPERS of SSC, and CORRECT answer was option 3 |
|
228. |
$\left[8-\left(\frac{4^{\frac{9}{4}}\sqrt{2.2^{2}}}{2\sqrt{2^{-2}}}\right)^{\frac{1}{2}}\right]$ is equal to1). 322). 83). 14). 0 |
Answer» RIGHT ANSWER for this QUESTION is 0 | |
229. |
Which of the following is the biggest$\sqrt[3]{4}$ , $\sqrt[4]{6}$ , $\sqrt[6]{15}$ , $\sqrt[12]{245}$1). $\sqrt[3]{4}$2). $\sqrt[4]{6}$3). $\sqrt[6]{15}$4). $\sqrt[12]{245}$ |
Answer» OPTION 1 is the ANSWER | |
230. |
If $x+\frac{1}{x}$ = -2 , then the value of $x^{2n+1}+\frac{1}{x^{2n+1}}$ , where n la a positive integer, is1). 02). 23). -24). -5 |
Answer» | |
231. |
If x = $\frac{1}{\sqrt{2}+1}$ , then (x+1) is equal to1). 22). $\sqrt{2}$3). $\sqrt{2}+1$4). $\sqrt{2}-1$ |
Answer» OPTION 2 is the RIGHT ANSWER | |
232. |
$\sqrt{3\sqrt{3\sqrt{3.....}}}$ is equal to1). $\sqrt{3}$2). 33). $2\sqrt{3}$4). $3\sqrt{3}$ |
Answer» 3 is the CORRECT answer as per the ssc answer KEY | |
233. |
Among the numbers $\sqrt{2}$,$\sqrt[3]{9}$,$\sqrt[4]{16}$,$\sqrt[5]{32}$,the greatest one is :1). $\sqrt{2}$2). $\sqrt[3]{9}$3). $\sqrt[4]{16}$4). $\sqrt[5]{32}$ |
Answer» OPTION 2 is the RIGHT ONE | |
234. |
If x = $\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$, y = $\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}$, then (x + y) equals :1). 82). 163). $2\sqrt{5}$4). $2(\sqrt{5}+\sqrt{3})$ |
Answer» 8 | |
235. |
$(\frac{8}{125})^{-\frac{4}{3}}$ simplifies to:1). $\frac{625}{16}$2). $\frac{625}{8}$3). $\frac{625}{32}$4). $\frac{16}{625}$ |
Answer» | |
236. |
The smallest among $\sqrt[6]{12}$,$\sqrt[3]{4}$,$\sqrt[4]{5}$, $\sqrt{3}$ is :1). $\sqrt[6]{12}$2). $\sqrt[3]{4}$,3). $\sqrt{3}$4). $\sqrt[4]{5}$ |
Answer» OPTION 4 : SEEMS CORRECT | |
237. |
$\frac{1}{\sqrt{9}-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-\sqrt{4}}$is equal to1). 52). 13). 34). 0 |
Answer» OPTION 1 : SEEMS CORRECT | |
238. |
The greatest one of $\sqrt{2}$,$\sqrt[3]{3}$ , $\sqrt[6]{6}$ , $\sqrt[5]{5}$1). $\sqrt{2}$2). $\sqrt[3]{3}$3). $\sqrt[6]{6}$4). $\sqrt[5]{5}$ |
Answer» | |
239. |
$\left[\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}-\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\right]$ simplifies to1). $2\sqrt{6}$2). $4\sqrt{6}$3). $2\sqrt{3}$4). $3\sqrt{2}$ |
Answer» it from previous YEAR SSC papers, option 2 is the right ANSWER |
|