Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

201.

If a = $7-4\sqrt{3}$ , then the value of $a^{\frac{1}{2}}+a^{-\frac{1}{2}}$ is :1). $3\sqrt{7}$2). 43). 74). $2\sqrt{3}$

Answer»

is OPTION 2 is the CORRECT ANSWER am i RIGHT

202.

$(125)^{\frac{2}{3}}\times (625)^{-\frac{1}{4}}$=$5^{x}$ , then the value of x is1). 32). 23). 04). 1

Answer»

I THINK OPTION 4 is the RIGHT ANSWER

203.

The value of $\frac{(1.5)^{3} + (4.7)^{3} + (3.8)^{3}-3\times 1.5\times 4.7 \times 3.8}{(1.5)^{2} + (4.7)^{2} + (3.8)^{2} - 1.5\times 4.7 -4.7\times 3.8-3.8\times 1.5}$is :1). 02). 13). 104). 30

Answer» RIGHT ANSWER is 1
204.

If m = $\sqrt{5+\sqrt{5+\sqrt{5+.....}}}$ and n = $\sqrt{5-\sqrt{5-\sqrt{5-.....}}}$ , then among the following the relation between m and n holds is1). m-n + 1 =02). m+n - 1 =03). m+n + 1 =04). m-n - 1 =0

Answer» OPTION 4 is the CORRECT ANSWER as per the answer KEY
205.

The largest number among$\sqrt{2}$, $\sqrt[3]{3}$,$\sqrt[4]{4}$ is :1). $\sqrt{2}$2). $\sqrt[3]{3}$3). $\sqrt[4]{4}$4). AU are equal

Answer» OPTION 2 : SEEMS CORRECT
206.

Given that $\sqrt{2}$ = 1.414 : the value of $\frac{1}{\sqrt{2}+1}$is1). 0.4142). 2.4143). 3.4144). 5.414

Answer»

I am not SURE, MAY be 0.414 is CORRECT

207.

The smallest of $\sqrt{8}+\sqrt{5}$,$\sqrt{7}+\sqrt{6}$,$\sqrt{10}+\sqrt{3}$ and $\sqrt{11}+\sqrt{2}$ is :1). $\sqrt{8}+\sqrt{5}$2). $\sqrt{7}+\sqrt{6}$3). $\sqrt{10}+\sqrt{3}$4). $\sqrt{11}+\sqrt{2}$

Answer» ANSWER for this QUESTION is OPTION 4
208.

The mean of $1^{3}$,$2^{3}$,$3^{3}$,$4^{3}$,$5^{3}$,$6^{3}$,$7^{3}$ is1). 202). 1123). 564). 28

Answer»

is 112 is the CORRECT ANSWER am i RIGHT

209.

$(16)^{0.16}\times (16)^{0.04}\times (2)^{0.2}$ is equal to :1). 12). 23). 44). 16

Answer»

i THINK OPTION 2 is CORRECT

210.

The quotient when $10^{100}$ is divided by $5^{75}$ is1). $2^{25}\times 10^{75}$2). $10^{25}$3). $2^{75}$4). $2^{75}\times 10^{25}$

Answer» CORRECT ANSWER is: $2^{75}\TIMES 10^{25}$
211.

$\sqrt{6+\sqrt{6+\sqrt{6+.....}}}$ is equal to1). 32). 43). 54). 6

Answer» OPTION 1 is the RIGHT ANSWER
212.

The value of $\sqrt{5+2\sqrt{6}}-\frac{1}{\sqrt{5+2\sqrt{6}}}$ is :1). $2\sqrt{2}$2). $2\sqrt{3}$3). $1+4\sqrt{5}$4). $\sqrt{5}-1$

Answer»

it from previous year SSC papers, OPTION 1 is the RIGHT ANSWER

213.

If the product of first fifty positive consecutive integers be divisible by $7^{n}$. where n is an Integer. then the largest possible value of n is1). 72). 83). 104). 5

Answer»

is 8 is the CORRECT ANSWER am i RIGHT

214.

Simplify $\frac{1}{\sqrt{100}-\sqrt{99}}-\frac{1}{\sqrt{99}-\sqrt{98}}+\frac{1}{\sqrt{98}-\sqrt{97}}-\frac{1}{\sqrt{97}-\sqrt{96}}+......+\frac{1}{\sqrt{2}-\sqrt{1}}$1). 02). 93). 104). 11

Answer» ANSWER for this QUESTION is OPTION 4
215.

Which of the following la closest to $\sqrt{3}$1). $\frac{9}{5}$2). 1.753). $\frac{173}{100}$4). 1.69

Answer» OPTION 3 : 1.75 is CORRECT
216.

If $27^{2x-1}=(243)^{3}$ , then the value of x is1). 32). 63). 74). 9

Answer» ANSWER for this QUESTION is 3
217.

Simplify : $\left[64^{\frac{2}{3}}\times 2^{-2}+8^{0}\right]^{\frac{1}{2}}$1). 02). 13). 24). $\frac{1}{2}$

Answer»

2

218.

Arranging the following in ascending order $3^{34}$,$2^{51}$,$7^{17}$ , we get1). $3^{34}$ > $2^{51}$ > $7^{17}$2). $7^{17}$ > $2^{51}$ > $3^{34}$3). $3^{34}$ > $7^{17}$ > $2^{51}$4). $2^{51}$ > $3^{34}$ > $7^{17}$

Answer»

$3^{34}$ > $2^{51}$ > $7^{17}$ : - is correct hence option 1

219.

If $\left(\frac{3}{4}\right)^{3}\left(\frac{4}{3}\right)^{-7}$=\left(\frac{3}{4}\right)^{2x} , then x is :1). -22). 23). 54). $2\frac{1}{2}$

Answer»

is 2 is the CORRECT ANSWER am i RIGHT

220.

$\sqrt{2+\sqrt{2+\sqrt{2+.....}}}$ is equal to1). $\sqrt{2}$2). $2\sqrt{2}$3). 24). 3

Answer» OPTION 3 is the correct ANSWER as per the answer KEY
221.

The value of $ [(0.87)^{2}+(0.13)^{2}(0.87)\times (0.26)]^{2013}$ is1). 02). 20133). 14). -1

Answer»

I have READ it SOMEWHERE 2013 is CORRECT

222.

Solve for x: $3^{x}-3^{x-1}$ = 486.1). 72). 93). 54). 6

Answer»

This question was asked some where in previous YEAR PAPERS of SSC, and CORRECT ANSWER was option 4

223.

$\left[\frac{\sqrt{3}+1}{\sqrt{3}-1}+\frac{\sqrt{2}+1}{\sqrt{2}-1}+\frac{\sqrt{3}-1}{\sqrt{3}+1}+\frac{\sqrt{2}-1}{\sqrt{2}+1}\right]$ is simplified to1). 102). 123). 144). 18

Answer» RIGHT ANSWER for this QUESTION is 10
224.

If x= $1+\sqrt{2}+\sqrt{3}$ then the value of $\left(x+\frac{1}{x-1}\right)$ is1). $1+2\sqrt{3}$2). $2+\sqrt{3}$3). $3+\sqrt{2}$4). $2\sqrt{3}-1$

Answer» ANSWER for this QUESTION is OPTION 1
225.

The simplified form of $\frac{1}{\sqrt{7}+\sqrt{5}}+\frac{1}{\sqrt{12}-\sqrt{5}}+\frac{1}{\sqrt{12}-\sqrt{7}}$ is :1). 52). 23). 14). 0

Answer» 0 : OPTION 4 is the CORRECT ANSWER
226.

If $2^{x-1}+2^{x+1}$ = 320, then the value of x is1). 62). 83). 54). 7

Answer»

I THINK 7 is RIGHT

227.

$\sqrt{8-2\sqrt{15}}$ is equal to1). $\sqrt{5}+\sqrt{3}$2). $5-\sqrt{3}$3). $\sqrt{5}-\sqrt{3}$4). $3-\sqrt{5}$

Answer»

This question was asked some where in previous YEAR PAPERS of SSC, and CORRECT answer was option 3

228.

$\left[8-\left(\frac{4^{\frac{9}{4}}\sqrt{2.2^{2}}}{2\sqrt{2^{-2}}}\right)^{\frac{1}{2}}\right]$ is equal to1). 322). 83). 14). 0

Answer» RIGHT ANSWER for this QUESTION is 0
229.

Which of the following is the biggest$\sqrt[3]{4}$ , $\sqrt[4]{6}$ , $\sqrt[6]{15}$ , $\sqrt[12]{245}$1). $\sqrt[3]{4}$2). $\sqrt[4]{6}$3). $\sqrt[6]{15}$4). $\sqrt[12]{245}$

Answer» OPTION 1 is the ANSWER
230.

If $x+\frac{1}{x}$ = -2 , then the value of $x^{2n+1}+\frac{1}{x^{2n+1}}$ , where n la a positive integer, is1). 02). 23). -24). -5

Answer»

option 3 is the CORRECT ANSWER as per the answer KEY

231.

If x = $\frac{1}{\sqrt{2}+1}$ , then (x+1) is equal to1). 22). $\sqrt{2}$3). $\sqrt{2}+1$4). $\sqrt{2}-1$

Answer» OPTION 2 is the RIGHT ANSWER
232.

$\sqrt{3\sqrt{3\sqrt{3.....}}}$ is equal to1). $\sqrt{3}$2). 33). $2\sqrt{3}$4). $3\sqrt{3}$

Answer» 3 is the CORRECT answer as per the ssc answer KEY
233.

Among the numbers $\sqrt{2}$,$\sqrt[3]{9}$,$\sqrt[4]{16}$,$\sqrt[5]{32}$,the greatest one is :1). $\sqrt{2}$2). $\sqrt[3]{9}$3). $\sqrt[4]{16}$4). $\sqrt[5]{32}$

Answer» OPTION 2 is the RIGHT ONE
234.

If x = $\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$, y = $\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}$, then (x + y) equals :1). 82). 163). $2\sqrt{5}$4). $2(\sqrt{5}+\sqrt{3})$

Answer» 8
235.

$(\frac{8}{125})^{-\frac{4}{3}}$ simplifies to:1). $\frac{625}{16}$2). $\frac{625}{8}$3). $\frac{625}{32}$4). $\frac{16}{625}$

Answer»

I have READ it somewhere $\frac{625}{16}$ is correct

236.

The smallest among $\sqrt[6]{12}$,$\sqrt[3]{4}$,$\sqrt[4]{5}$, $\sqrt{3}$ is :1). $\sqrt[6]{12}$2). $\sqrt[3]{4}$,3). $\sqrt{3}$4). $\sqrt[4]{5}$

Answer» OPTION 4 : SEEMS CORRECT
237.

$\frac{1}{\sqrt{9}-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-\sqrt{4}}$is equal to1). 52). 13). 34). 0

Answer» OPTION 1 : SEEMS CORRECT
238.

The greatest one of $\sqrt{2}$,$\sqrt[3]{3}$ , $\sqrt[6]{6}$ , $\sqrt[5]{5}$1). $\sqrt{2}$2). $\sqrt[3]{3}$3). $\sqrt[6]{6}$4). $\sqrt[5]{5}$

Answer»

$\SQRT[3]{3}$

239.

$\left[\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}-\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\right]$ simplifies to1). $2\sqrt{6}$2). $4\sqrt{6}$3). $2\sqrt{3}$4). $3\sqrt{2}$

Answer»

it from previous YEAR SSC papers, option 2 is the right ANSWER