Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

601.

In the adjoining figure, points D and E are on side BC of ∆ABC, such that BD = CE and AD AE. Show that ∆ABD ≅ ∆ACE.

Answer»

Given: Points D and E are on side BC of ∆ABC, such that BD = CE and AD = AE. 

To prove: ∆ABD ≅ ∆ACE

Proof: 

In ∆ADE, seg AD = seg AE [Given] 

∴ ∠AED = ∠ADE …(i) [Isosceles triangle theorem] 

Now, ∠ADE + ∠ADB = 180° …(ii) [Angles in a linear pair] 

∴ ∠AED + ∠AEC = 180° ….(iii) [Angles in a linear pair] 

∴ ∠ADE + ∠ADB = ∠AED + ∠AEC [From (ii) and (iii)] 

∴ ∠ADE + ∠ADB = ∠ADE + ∠AEC [From (i)] 

∴ ∠ADB = ∠AEC ….(iv) [Eliminating ∠ADE from both sides] 

In ∆ABD and ∆ACE, seg BD ≅ seg CE [Given] 

∠ADB = ∠AEC [From (iv)] 

seg AD ≅ seg AE [Given] 

∴ ∆ABD ≅ ∆ACE [SAS test]

602.

In the given figure if AD ⊥ BC, prove that AB2 + CD2 = BD2 + AC2. 

Answer»

Given: In △ABC, AD ⊥ BC. 

R.T.P: AB2 + CD2 = BD2 + AC2 

Proof: △ABD is a right angled triangle 

AB2 – BD2 = AD2 ……. (1) 

△ACD is a right angle triangle

AC2 – CD2 = AD2............ (2) 

From (1) and (2) 

AB2 – BD2 = AC2 – CD2 

AB2 + CD2 = BD2 + AC2

603.

Give two different examples of pair of i) Similar figures ii) Non-similar figures

Answer»

i) Similar figures: 

a) Any two circles 

b) Any two squares 

c) Any two equilateral triangles 

ii) Non-similar figures: 

a) A square and a rhombus 

b) A square and a rectangle

604.

In quadrilateral ACBD, AC = AD and AB bisects ∠A (See the given figure). Show that ΔABC ≅ ΔABD. What can you say about BC and BD?

Answer»

In ΔABC and ΔABD,

AC = AD (Given)

∠CAB = ∠DAB (AB bisects ∠A)

AB = AB (Common)

∴ ΔABC ≅ ΔABD (By SAS congruence rule)

∴ BC = BD (By CPCT)

Therefore, BC and BD are of equal lengths.

605.

What value(s) of x will make DE || AB, in the given figure?  AD = 8x + 9, CD = x + 3,BE = 3x + 4, CE = x.

Answer»

Given : In ABC, DE // AB AD = 8x + 9, CD = x + 3, 

BE = 3x + 4, CE = x 

By Basic proportionality theorem, 

If DE // AB then we should have

\(\frac{CD}{DA}=\frac{CE}{EB}\)

\(\frac{x+3}{8x+9}\) = \(\frac{x}{3x+4}\)

⇒ (x + 3) (3x + 4) = x (8x + 9) 

⇒ x (3x + 4) + 3 (3x + 4) – 8x2 + 9x 

⇒ 3x2 + 4x + 9x + 12 = 8x2 + 9x 

⇒ 8x2 + 9x – 3x2 – 4x – 9x -12 = 0 

⇒ 5x2 – 4x – 12 = 0 

⇒ 5x2 – 10x + 6x – 12 = 0

⇒ 5x (x – 2) + 6 (x – 2) = 0 

⇒ (5x + 6) (x – 2) = 0 

⇒ 5x + 6 = 0 or x – 2 = 0 

⇒ x =\(\frac{-6}{5}\) or x = 2; 

x cannot be negative. 

∴ The value x = 2 will make DE // AB.

606.

In quadrilateral ACBD, AC = AD and AB bisects ∠A. Show that ΔABC ≅ ΔABD What can you say about BC and BD ?

Answer»

Given that AC = AD 

∠BAC = ∠BAD (∵ AB bisects ∠A)

Now in ΔABC and ΔABD 

AC = AD (∵ given) 

∠BAC = ∠BAD (Y given) 

AB = AB (common side) 

∴ ΔABC ≅ ΔABD 

(∵ SAS congruence rule)

607.

Fill in the blanks to make the statements true.In an isosceles triangle, two angles are always ________

Answer»

In an isosceles triangle, two angles are always equal.

608.

Fill in the blanks to make the statements true.If one angle of a triangle is equal to the sum of other two, then the measure of that angle is ________

Answer» 90°..................

If one angle of a triangle is equal to the sum of other two, then the measure of that angle is 90°.

609.

Fill in the blanks to make the statements true.In an isosceles triangle, angles opposite to equal sides are ________

Answer»

In an isosceles triangle, angles opposite to equal sides are equal.

Equal.......
610.

In Fig.,△AHK is similar to △ABC.If AK = 10 cm, BC = 3.5 cm and HK = 7 cm, find AC.

Answer»

Given 

ΔAHK ~ ΔABC, AK = 10 cm, 

BC = 3.5 cm and HK = 7 cm. 

We know that two triangles are similar if their corresponding sides are proportional.

⇒ \(\frac{AC}{AK}\) = \(\frac{BC}{HK}\)

⇒ \(\frac{AC}{10}\) = \(\frac{3.5}{7}\)

∴ AC = 5 cm

611.

Jayanti takes shortest route to her home by walking diagonally across a rectangular park. The park measures 60 metres × 80 metres. How much shorter is the route across the park than the route around its edges?

Answer»

Correct answer is 40 m

612.

Write the similarity relation in symbolic form.(A) Δ FGH ~ Δ HIK (B) Δ FGH ~ Δ KIH (C) Δ GFH ~ Δ HKI (D) Δ FHG ~ Δ IKH

Answer»

Correct option is: (B) Δ FGH ~ Δ KIH

613.

State whether the statements are True or False. The difference between the lengths of any two sides of a triangle is smaller than the length of third side.

Answer»

The difference between the lengths of any two sides of a triangle is smaller than the length of third side.

True

614.

Which of the following is a true statement? (a) Two similar triangles are always congruent (b) Two figures are similar if they have the same shape and size. (c) Two triangles are similar if their corresponding sides are proportional. (d) Two polygons are similar if their corresponding sides are proportional.

Answer»

(c)Two triangles are similar if their corresponding sides are proportional. 

According to the statement: 

∆ABC~ ∆DEF 

if AB/ DE = AC/DF = BC/EF

615.

In ∆ABC, if AB = 16 cm, BC = 12 cm and AC = 20 cm, then ∆ABC is (a) acute-angled (b) right-angled (c) obtuse-angled

Answer»

(b) right-angled 

We have: 

AB2 + BC2 = 162 + 122 = 256 + 144 = 400 

and, AC2 = 202 = 400 

∴ AB2 + BC2 = AC2 

Hence, ∆ABC is a right-angled triangle.

616.

In an isosceles ∆ABC, if AC = BC and AB2 = 2AC2 , then ∠C = ? (a) 30°(b) 45°(c) 60°(d) 90°

Answer»

(d) 90°

Given: 

AC = BC 

AB2 = 2AC2 = AC2 + AC2 = AC2 + BC2 

Applying Pythagoras theorem, we conclude that ∆ABC is right angled at C. 

Or, ∠C = 90°

617.

If in Fig 6.1, O is the point of intersection of two chords AB  and CD such that OB = OD, then triangles OAC and ODB are(A) equilateral but not similar(B) isosceles but not similar(C) equilateral and similar(D) isosceles and similar

Answer»

Correct answer is (D) isosceles and similar

618.

In ∆DEF and ∆PQR, it is given that ∠D = ∠Q and ∠R = ∠E, then which of the following is not true?(a) EF/PR = DF/PQ (b) DE/PQ = EF/RP (c) DE/QR = DF/PQ (d) EF/RP = DE/QR

Answer»

(b) DE/PQ = EF/RP 

In ∆DEF and ∆PQR, we have: 

∠D = ∠Q  and ∠R = ∠E

Applying AA similarity theorem, we conclude that ∆DEF ~ ∆QRP. 

Hence, DE/QR = DF/QP = EF/PR

619.

If in two triangles DEF and PQR, ∠D = ∠Q and ∠R = ∠E, then which of the following is not true?(A) EF/PR = DF/PQ(B) DE/PQ = EF/RP(C) DE/QR = DF/ PQ(D) EF/RP = DE/QR

Answer»

Correct answer is (B) DE/PQ = EF/RP

620.

In Fig.6.3, two line segments AC and BD intersect each other at the point P such that PA = 6 cm, PB = 3 cm,PC = 2.5 cm, PD = 5 cm, ∠ APB = 50° and ∠ CDP = 30°. Then, ∠ PBA is equal to(A) 50° (B) 30° (C) 60° (D) 100°

Answer»

Correct answer is (D) 100°

621.

Find the value of x in Fig. 6.38.

Answer»

Correct answer is x = 20°

622.

It is given that ΔABC ~ ΔPQR, with BC/QR = 1/3. Then, ar(PRQ)/ar(BCA) is equal to (A) 9 (B) 3 (C) 1/3 (D) 1/9

Answer»

Correct answer is (A) 9

623.

In the three altitudes of a ∆ are equal then triangle is: (A) isosceles (B) equilateral (C) right angled (D) none 

Answer» The correct option is (B).
624.

It is given thatΔ ABC ~ Δ DFE, ∠A =30°, ∠C = 50°, AB = 5 cm, AC = 8 cm and DF= 7.5 cm. Then, the following is true:(A) DE = 12 cm, ∠F = 50° (B) DE = 12 cm, ∠F = 100°(C) EF = 12 cm, ∠D = 100° (D) EF = 12 cm, ∠D = 30°

Answer»

Correct answer is (B) DE = 12 cm, F = 100°

625.

If in two triangles ABC and PQR, AB/QR = BC/PR = CA/PQ, then (A)Δ PQR ~ Δ CAB (B) Δ PQR ~Δ ABC(C)Δ CBA ~ Δ PQR (D) Δ BCA ~ Δ PQR

Answer»

Correct answer is (A)Δ PQR ~ Δ CAB

626.

In figure, T is a point on side QR of ∆PQR and S is a point such that RT = ST. Prove that PQ + PR > QS

Answer» In ∆PQR we have

PQ + PR > QR

⇒ PQ + PR > QT + TR

⇒ PQ + PR > QT + ST

∴RT = ST

 In ∆QST QT + ST > SQ

∴ PQ + PR > SQ
627.

Find the values of x and y in Fig. 6.37.

Answer»

Correct answer is x = 80°, y = 75°

628.

In Fig. 6.40, find the values of x, y and z.

Answer»

Correct answer is x = 60°, y = 120°, z = 30°

629.

In Δ ABC, DE || BC (Fig. 6.39). Find the values of x, y and z.

Answer»

Correct answer is x = 30°, y = 40°. z = 110°

630.

In Fig., AB divides ∠DAC in the ratio 1: 3 and AB =DB. Determine the value of x.

Answer»

Given,

AB divides ∠DAC in the ratio 1: 3

∠DAB: ∠BAC = 1: 3

∠DAC + ∠EAC = 180°

∠DAC + 108° = 180°

∠DAC = 180° – 108°

= 72°

∠DAB = \(\frac{1}{4}\) x 72° = 18°

∠BAC = \(\frac{3}{4}\) x 72° = 54°

In ΔADB

∠DAB + ∠ADB + ∠ABD = 180°

18° + 18° + ∠ABD = 180°

36° + ∠ABD = 180°

∠ABD = 180° – 36°

= 144°

∠ABD + ∠ABC = 180°(Linear pair)

144° + ∠ABC = 180°

∠ABC = 180° – 144°

= 36°

In ΔABC

∠BAC + ∠ABC + ∠ACB = 180°

54° + 36° + x = 180°

90° + x = 180°

x = 180° – 90°

= 90°

Thus, x = 90°

631.

In Fig. 6.44, if RP = RQ, find the value of x.

Answer»

Correct answer is x = 50°

632.

Fill in the blanks to make the statements true.In the given figure, AB = AD and ∠BAC = ∠DAC. Then(i) ∆ ________ ≅ AABC.(ii) BC = ________(iii) ∠BCA = ________(iv) Line segment AC bisects ________ and ________

Answer»

In ∆ABC and ∆ADC,

AC = AC [common]

∠BAC = ∠DAC [given]

AB = AD [given]

∴ ∆ABC ≅ ∆ADC [SAS criterion]

∴ BC = DC [By C.P.C.T.] 

and ∠BCA = ∠DCA [By C.P.C.T.]

(i) ∆ADC ≅ ∆ABC

(ii) BC = DC

(iii) ∠BCA = ∠DCA

(iv) Line segment AC bisects ∠BAD and ∠BCD.

633.

In Fig. 6.41, ΔPQR is right-angled at P. U and T are the points on line QRF. If QP || ST and US ||RP, find ∠S.

Answer»

Correct answer is S = 90°

634.

Fill in the blanks to make the statements true.In the given figure,(i) ∠TPQ = ∠ ______ + ∠ _______(ii) ∠UQR = ∠______ + ∠ ______(iii) ∠PRS = ∠ ______ + ∠ _______

Answer»

(i) PQR, PRQ: 

∠TPQ = ∠PQR + ∠PRQ [Exterior angle property]

(ii) QPR, QRP: 

∠UQR = ∠QPR + ∠QRP [Exterior angle property]

(iii) RPQ, ROP: 

∠PRS = ∠RPQ + ∠ROP [Exterior angle property]

635.

In Fig. 6.35, QP || RT. Find the values of x and y.

Answer»

Correct answer is x = 70°, y = 80°

636.

In the given figure, ΔPQR is right angled at P. U and T are the points on line QRF. If QP || ST and US || RP, find ∠S.

Answer»

If QP || ST and QT is a transversal, then ∠PQR = ∠STU                      [alternate interior angles]

and if DS || RP and QT is a transversal, then ∠PRQ = ∠SUT              [alternate interior angles]

Hence, ∠S must be equal to ∠Pi.e. 90°.

637.

Fill in the blanks to make the statement true.In Fig., ∠PRS = ∠QPR + ∠ ________

Answer»

PQR

∠ PRS = ∠ QPR + ∠ PQR

638.

Which of the angles form a triangle?40°, 50°, 60°

Answer»

Given angles are 40°, 50°, 60° 

Sum of the angles = 40° + 50° + 60° 

= 150° <180° 

So, 40°, 50°, 60° cannot form a triangle.

639.

From the given figure ∠y = …………….?A) 40°B) 50°C) 60°D) 75°

Answer»

Correct option is B) 50°

640.

The measures of ∠x and ∠y in Fig. are respectively(a) 30°, 60° (b) 40°, 40° (c) 70°, 70° (d) 70°, 60°

Answer»

(d) 70o, 60o

We know that, the exterior angle is sum of interior opposite angles of triangle.

So, x + 50o = 120o

X = 120o – 50o

X = 70o

We also know that, sum of angles of triangle are equal to 180o.

So, 50o + x + y = 180o

50o + 70o + y = 180o

120o + y = 180o

Y = 180o – 120o

Y = 60o

Therefore, the measures of ∠x and ∠y is 70o and 60o respectively.

641.

If length of two sides of a triangle are 6 cm and 10 cm, then the length of the third side can be (a) 3 cm (b) 4 cm (c) 2 cm (d) 6 cm

Answer»

(d) 6 cm

We know that,

The sum of the lengths of any two sides of a triangle is always greater than the length of the third side.

So, 6 cm + 10 cm > 3rd side

3rd side < 16 cm

The difference of the lengths of any two sides of a triangle is always smaller than the length of the third side.

So, 10 – 6 < 3rd side

3rd side > 4 cm

Therefore, 6 cm is the length of the 3rd side.

642.

`Delta ABC` is right-angled at A and `AD bot BC`. If `BC=13 cm and AC=5 cm`, find the ratio of areas of `Delta ABC and Delta ADC`.

Answer» Correct Answer - `169:25`
In `Delta BAC and Delta ADC`, we have
`angle BAC= angle ADC=90^(@)`
`and angle ACB= angle DCA= angle C`
`:. Delta BAC~Delta ADC`. [ by AA-similarity]
`:. (ar (Delta ABC))/(ar (Delta ADC))=(ar (DeltaBAC))/(ar (Delta ADC))=(BC^(2))/(AC^(2))`
643.

In a right-angled triangle ABC, if angle B = 90°, BC = 3 cm and AC = 5 cm, then the length of side AB is(a) 3 cm (b) 4 cm (c) 5 cm (d) 6 cm

Answer»

(b) 4 cm

From Pythagoras theorem.

AC2 = AB2 + BC2

52 = AB2 + 32

AB2 = 25 – 9

AB2 = 16

AB = √16

AB = 4 cm

644.

In the given figure, if y is five times x, find the value of z.

Answer»

Given, 

y = 5x

According to the angle sum property of a triangle,

60° + x + y = 180°

60° + x + 5x = 180°

60° + 6x = 180°

6x = 180° - 60° = 120°

x = 120°/6 = 20°

y = 5x = 5 x 20 = 100°

According to the exterior angle property,

z = 60° + y

= 60° + 100°

= 160°

645.

The lengths of two sides of an isosceles triangle are 9 cm and 20 cm. What is the perimeter of the triangle? Give reason.

Answer»

Third side must be 20 cm, because sum of two sides should be greater than the third side.

∴ Perimeter of the triangle

= Sum of all sides

= (9 + 20 + 20) cm

= 49 cm

646.

Without drawing the triangles write all six pairs of equal measures in each of the following pairs of congruent triangles.(a) ΔSTU ≅ ΔDE(b) ΔABC ≅ ΔLMN(c) ΔYZX ≅ APQR(d) ΔXYZ ≅ ΔMLN

Answer»

We know that, corresponding parts of congruent triangles are equal.

(a) ΔSTU ≅ ΔDEF

∠S = ∠D, ∠T = ∠E and ∠U = ∠F ST = DE, TU = EF and SU = DF

(b) ΔABC ≅ ΔLMN

∠A = ∠L, ∠B = ∠M and ∠C = ∠N AB = LM, BC = MN and AC = LN

(c) ΔYZX ≅ APQR

∠T = ∠P, ∠Z = ∠Q and ∠X = ∠R YZ = PQ, ZX = QR and YX = PR

(d) ΔXYZ ≅ ΔMLN

∠X = ∠M, ∠Y = ∠L and ∠Z = ∠N XY = ML,YZ = LN and XZ = MN

647.

In the following pairs of triangles in below figures, the lengths of the sides are indicated along the sides. By applying SSS congruence criterion, determine which triangles are congruent. If congruent, write the results in symbolic form.

Answer»

(a) ΔABC ≅ ΔNLM

(b) ΔLMN ≅ ΔGHI

(c) ΔLMN ≅ ΔLON

(d) ΔZYX ≅ ΔWXY

(e) ΔOAB ≅ ΔDOE

(f) ΔSTU ≅ ΔSVU

(g) ΔPSR ≅ ARQP

(h) ΔSTU ≅ ΔPQR

648.

Decide whether the SSS congruence is true with the following figures. Give reasons

Answer»

i) From the figures, 

BE = CA 

EN = AR

BN = CR 

∴ S.S.S congruency is true. 

ii) From the figure, 

AL = SD = 4 cm

LD = LD = common side 

AD ≠ LS (3 cm ≠ 2.5 cm) 

∴ S.S.S congruency is not true.

649.

In the adjacent figure, choose the correct answer! (i) ΔPQR ≅ ΔPQS (ii) ΔPQR ≅ ΔQPS (iii) ΔPQR ≅ ΔSQP (iv) ΔPQR ≅ ΔSPQ

Answer»

Correct answer is (ii) ΔPQR ≅ ΔQPS is correct.

650.

For the following congruent triangles, and the pairs of corresponding angles.

Answer»

i) ∠P = ∠R 

∠T = ∠S

∠TQP = ∠SQR 

ii) ∠P=∠S 

∠Q = ∠R 

∠POQ = ∠SOR