InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 701. |
Find general solution of `4cos^2 x=1`.A. `npipm(4pi)/(3), ninZ`B. `npipm(5pi)/(3), ninZ`C. `npipm(pi)/(3), ninZ`D. `npipm(2pi)/(3), ninZ` |
| Answer» Correct Answer - C | |
| 702. |
Let`(sin(theta-alpha))/("sin"(theta-beta))=a/b a n d(cos(theta-alpha))/("cos"(theta-beta))=c /d t h e n(a c+b d)/(a d+b c)=`(a)`cos(alpha-beta)`(b) `sin(alpha-beta)``sin(alpha+beta)`(d) none of these |
|
Answer» `sin(theta-alpha)/(sin(theta-beta)) = a/b` `=>a/sin(theta-alpha) = b/(sin(theta-beta)) ` Let `a/sin(theta-alpha) = b/(sin(theta-beta)) = k_1` `=>a = k_1sin(theta-alpha), b = k_1sin(theta-beta)` Similarly, `=>c = k_2cos(theta-alpha), d = k_2cos(theta-beta)` Now, `(ac+bd)/(ad+bc) = (k_1sin(theta-alpha)k_2cos(theta-alpha)+k_1sin(theta-beta)k_2cos(theta-beta))/(k_1sin(theta-alpha)k_2cos(theta-beta)+k_1sin(theta-beta)k_2cos(theta-alpha))` `=(k_1k_2(sin(theta-alpha)cos(theta-alpha)+sin(theta-beta)cos(theta-beta)))/(k_1k_2(sin(theta-alpha)cos(theta-beta)+sin(theta-beta)cos(theta-alpha)))` `=(1/2(sin(2(theta-alpha))+sin(2(theta-beta))))/(sin(theta-alpha+theta-beta))` `=(sin(2(theta-alpha))+sin(2(theta-beta)))/(2sin(2theta-(alpha+beta))` `=(2sin((2(theta-alpha+theta-beta))/2)cos((2(theta-alpha-theta+beta))/2))/(2sin(2theta-(alpha+beta))` `=(2sin((2theta-(alpha+beta))cos(beta-alpha)))/(2sin(2theta-(alpha+beta))` `=cos(beta-alpha)` `=cos(-(beta-alpha))...[As cos(-theta) = cos theta]` `=cos(alpha-beta)` So, option `(a)` is the correct option. |
|
| 703. |
The general solution of the equation `4cos^2x+6sin^2x=5`A. `npipm(pi)/(6), ninZ`B. `npipm(pi)/(4), ninZ`C. `npipm(pi)/(3), ninZ`D. `npipm(pi)/(2), ninZ` |
| Answer» Correct Answer - B | |
| 704. |
Find the range of `y=sin^3x-6sin^2x+11sinx-6.` |
|
Answer» `y=sin^3x-6sin^2x+11sinx-6` Put `sinx=t` `y=t^3-6t^2+11t-6` diff. with respect to t `dy/dt=3t^2-12t+11` `3(t-2)^2-1>0` Range[f(-1),f(1)] Range[-24,0] `f(-1)=-1-6-11-6=-24` `f(1)=1-6+11-6=0`. |
|