Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

651.

If `a=9,b=4a n dc=8`then find the distance between the middle point of BC and the foot ofthe perpendicular form `Adot`

Answer» We can create a triangle `ABC` with the given details.
Please refer to video to see the diagram.
We have to find `DE`.
From the diagram,
`DE = CD - CE = a/2- bcosC`
`=>DE = a/2 - b((a^2+b^2-c^2)/(2ab))`
`=(a^2-a^2-b^2+c^2)/(2a)`
`=(-b^2+c^2)/(2a) = (-(4)^2 +(8)^2)/(2(9))``=48/18 = 8/3`
`:. DE = 8/3`
652.

Let `A=sinx+cosxdot`Then find the value of `sin^4x+cos^4x`in terms of `Adot`

Answer» `A=sinx+cosx`
`A^2=sin^2x+cos^2x+2sinxcosx`
`A^2=(A^2/2-1)`
`sin^4x+cos^4x=(sin^2x)^2+(cos^2x)^2`
`=(sin^2x+cos^2x)^2-2sin^2xcos^2x`
`=1-2(sinxcosx)^2`
`=1-2*(A^2-1)^2/4`
`=(2-(A^2-1)^2)/2`.
653.

If `tanalpha`is equal to the integral solution of the inequality `4x^2-16 x+15

Answer» It is given that slope of bisector is`cos beta.`
`:. cos beta = tan45^@ =>cos beta = 1->(1)`
Now, `4x^2-16x+15 lt 0`
`=>4x^2-10x-6x+15 lt 0`
`=>2x(2x-5)-3(2x-5) lt 0`
`=>(2x-3)(2x-5) lt 0`
`:. 3/2 lt x lt 5`
As, `tan alpha` is an integral solution for this inequality,
`:. tanalpha = 2`
`=>cotalpha = 1/2->(2)`
Now, `sin(alpha+beta)sin(alpha-beta) = sin^2alpha-sin^2beta`
`=1/(cosec^2alpha) - (1-cos^2beta)`
`=1/(1+cot^2alpha)-1+cos^2beta`
From (1) and (2),
`1/(1+1/4) -1+1 = 4/5`
So, option `d` is the correct option.
654.

The perimeter of a triangle ABC is saix times the arithmetic mean ofthe sines of its angles. If the side `ai s1`then find angle `Adot`

Answer» Here,` a = 1`
It is given that,
`a+b+c = 6((sinA+sinB+sinC)/3)`
As `a = 2RsinA, b = 2RsinB and c = 2RsinC`
`=>2R(sinA+SinB+sinC) = 2(sinA+sinB+sinC)`
`=>R = 1`
Now, ` a = 2RsinA`
`1 = 2(1)sinA`
`=>sinA = 1/2`
`=>A= pi/6 = 30^@.`
655.

Find the sines and cosines of all angles in the first four quadrants whose tangents are equal to `cos 135^@`

Answer» `cos135=-1/sqrt2`
`tanp=-1/sqrt2`
`sinp=1/sqrt2`(in second quater)
`=-1/sqrt2`( in fourth quater)
`cos(P)=-1/sqrt2`(in second quadrent)
`=1/sqrt2`( in fourth quadrent).
656.

The roots of the equation `4x^2-2sqrt(5)x+1=0,a r e`(a)`sin36^0,sin18^0`(b) `sin18^0,cos36^0`(c)`sin36^0,cos18^0`(d) `cos18^0,cos36^0`

Answer» `4x^2-2sqrt5x+1 = 0`
this is a quadratic equation, so its roots are,
`=> x= (-(-2sqrt5)+-sqrt((-2sqrt5)^2-4(4)(1)))/(2(4))`
`=>x = (2sqrt5+-sqrt4)/(8)`
`=>x= (sqrt5+-1)/4`
As `sin18^@ = (sqrt5-1)/4 and cos36^@ = (sqrt5+1)/4`
`=>x = sin18^@ and x = cos36^@`
So, option `(b)` is the correct option.
657.

`alpha,beta,gammaand delta` are angles in I,II,II and IV quadrants, respectively and none of them is an integral multiple of `pi//2`. They form an increasing arithmetic progression. Which of the following holds?A. `cos(alpha-delta)gt0`B. `cos(alpha-delta)=0`C. `cos(alpha-delta)lt0`D. `cos(alpha-delta)gt0or `cos(alpha-delta)lt0`

Answer» Correct Answer - A
`0ltalphalt90^@,90^@ltbetalt180^@`
`180^@ltgammalt270^@,270^@ltdeltalt360^@`
`rArrgammalt270^@ltalpha+deltalt450^@`
`rArr alpha+delta` lies in the I or IV quadrant and cosine in both is positive.
If d is the common ratio of theA.P., then
`beta=alpha+d,gamma=alpha+2d,delta=alpha+3d`
`rArr beta+gamma=alpha+delta,2(alpha-beta)=-2d=beta-delta`
`and alpha+gamma=2beta`,
Now, `beta-gamma=-d,alpha-delta=-3d`
`270^@ltdeltalt360^@`
`rArr 270^@ltalpha+3dlt360^@`
`rArr 200^@lt3dlt290^@ ( :. alpha=70^@)`
`rArr400^@lt+6d,580^@`
`rArr 680^@lt4alpha+6dlt860^@`
`680^@ lttheta lt 860^@`
658.

Find the least positive value of `x`satisfying`(sin^2 2x+4sin^4x-4sin^2xcos^2x)/4=1/9`

Answer» `(sin^2 2x+4sin^4x - 4sin^2xcos^2x)/4 = 1/9`
`=>((2sinxcosx)^2+4sin^4x - 4sin^2xcos^2x)/4 = 1/9`
`=>(4sin^2xcos^2x+4sin^4x - 4sin^2xcos^2x)/4 = 1/9`
`=>(4sin^4x)/4 = 1/9`
`=>sin^4x = 1/9`
`=>sinx = +-1/sqrt3`
So, least positive value of `x` will be `sin^-1(1/sqrt3).`
659.

If `f(x)=2(7cosx+24sinx)(7sinx-24cosx),`for every `x in R ,`then maximum value of `f(x)^(1/4)`is_____

Answer» `f(x) = 2(7cosx+24sinx)(7sinx-24cosx)`
`=>f(x) = 2*25*25(7/25cosx+24/25sinx)(7/25sinx-24/25cosx)`
Let `cos alpha = 7/25`,
Then, `sinalpha = sqrt(1-(7/25)^2) = sqrt(576/625) = 24/25`
`:. f(x) = 2*25*25(cosalphacosx+sinalphasinx)(cosalphasinx-cosalphacosx)`
`=>f(x) = 25*25*2(cos(x-alpha)sin(x-alpha))`
`=>f(x) = 25*25*sin(2(x-alpha))`
As maximum value of `sin(2(x-alpha))` is `1`,
`:. f(x)_max = 25*25`
`=>(f(x)^(1/4))_max = (25*25)^(1/4)`
`=>(f(x)^(1/4))_max = (25)^(1/2) = 5.`
So, the maximum value of `f(x)^(1/4)` is `5`.
660.

If `alpha` and `beta` are acute angles and `cot alpha=1/4` and `cot beta=5/3`. prove that `alpha-beta=45`

Answer» `cotalpha=1/4,tanalpha=4`
`cotbeta=5/,tanbeta=3/5`
`tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalphatanbeta)`
`=(4-3/5)/(1+12/5)=1`
`alpha-beta=45^o`
since `alpha<90^o`
`beta<90^o`.
661.

If : `csc theta - cot theta = p, "then" : csc theta=` A)`theta + (1)/(p)` B)`theta - (1)/(p)` C)`(1)/(2) (p +(1)/(p))` D)`(1)/(2) (p - (1)/(p))`A. `theta + (1)/(p)`B. `theta - (1)/(p)`C. (1)/(2) (p +(1)/(p))D. (1)/(2) (p - (1)/(p))

Answer» Correct Answer - C
662.

If `theta_1` and `theta_2`are two values lying in `[0,2pi]`for which `t a ntheta=lambda,`then `tan((theta_1)/2)tan((theta_2)/2)`is equal to(a)0 (b) `-1`(c) 2(d) 1

Answer» `tan theta=lambda`
`tan2A=(2tanA)/(1-tan^2A)`
`(2tan(theta/2))/(1-tan^2(theta/2))=lambda`
`lambdatan^2(theta/2)+2tan(theta/2)-lambda=0`
`tan(theta/2)=(-2pmsqrt(4+4lambda^2))/(2lambda)`
`=(-1pmsqrt(1+lambda^2))/lambda`
`tan(theta_1/2)=(-1+sqrt(1+lambda^2))/lambda`
`tan(theta_2/2)=(1--sqrt(1+lambda^2))/lambda`
`tan(theta_1/2)tan(theta_2/2)=((-1+sqrt(1+lambda^2))/lambda)((-1-sqrt(1+lambda^2))/lambda)=-1`.
663.

If `t a ntheta/2=sqrt((a-b)/(a+b))tanvarphi/2`, prove that `costheta=(a cosvarphi+b)/(a+b cosvarphi)`.

Answer» `L.H.S. = cos theta = (1-tan^2(theta/2))/(1+tan^2(theta/2))`
`=(1-((a-b)/(a+b)tan^2(phi/2)))/(1+((a-b)/(a+b)tan^2(phi/2)))`
`=(1-((a-b)/(a+b)sin^2(phi/2)/cos^2(phi/2)))/(1+((a-b)/(a+b)sin^2(phi/2)/cos^2(phi/2)))`
`=((a+b)cos^2(phi/2)-(a-b)sin^2(phi/2))/((a+b)cos^2(phi/2)+(a-b)sin^2(phi/2))`
`=(a(cos^2(phi/2) - sin^2(phi/2))+b(cos^2(phi/2) + sin^2(phi/2)))/(a(cos^2(phi/2) + sin^2(phi/2))+b(cos^2(phi/2) - sin^2(phi/2)))`
`=(acosphi+b)/(a+bcosphi)`
`=R.H.S.`
664.

Consider angles `alpha = (2n+(1)/(2))pi pm A` and `beta = m pi +(-1)^(m)((pi)/(2)-A)` where n, m `in` I. Which of the following is not true ?A. `alpha` and `beta` are always the same anglesB. `alpha` and `beta` are co-terminal anglesC. `sin alpha = sin beta` but `cos alpha ne cos beta`D. none of these

Answer» Correct Answer - C
Let m = 2k, i.e. m is even where `k in I`
`therefore beta = 2k pi + (pi)/(2)-A=(2k+(1)/(2))pi -A` ….(1)
If m = 2k + 1, i.e., m is odd, then
`therefore beta = (2k+1)pi-((pi)/(2)-A)=(2k+(1)/(2))pi+A` …..(2)
From (1) and (2), `beta` can be expressed as
`beta = (2k+(1)/(2))pi pm A, k in I`
which is same as `alpha`.
665.

`csc theta - 2 cos theta * cot 2 theta =`A)`2 sin theta`B)`sin 2 theta`C)`2 cos theta`D)`cos 2 theta`A. `2 sin theta`B. `sin 2 theta`C. ` 2 cos theta`D. `cos 2 theta`

Answer» Correct Answer - A
666.

If `sin theta = 4//5, where pi//2 lt theta lt pi,` evaluate : `(sec theta + tan theta)/(cosec theta - cot theta)`A. `2//3`B. `-1(1)/(2)`C. `-3//4`D. `-1(1)/(3)`

Answer» Correct Answer - B
667.

If : `tan((pi)/(4)+theta) - tan((pi)/(4) - theta) =m*tan (ntheta),"then"`A)`m lt n` B)m = n ] C)`m gt n` D)`m^(n) lt n`A. `m lt n`B. m = n ]C. `m gt n`D. `m^(n) lt n`

Answer» Correct Answer - B
668.

`cos^2((pi)/(4)-theta)+cos^2((pi)/(4)+theta)=.....`A. `sin 2 theta`B. `cos 2 theta`C. 1D. 0

Answer» Correct Answer - C
669.

If : `sin A + cos A =1, "then" :sin A - cos A =` A)`pm 1` B)0 C)`pm 2` D)`pm 3`A. `pm 1`B. 0C. `pm 2`D. `pm 3`

Answer» Correct Answer - A
670.

`16 * cos ""(pi)/(12) * cos"" (4pi)/(12) * cos"" (5pi)/(12)=`A)`sqrt1`B)`sqrt2`C)`sqrt3`D)`sqrt4`A. `sqrt1`B. `sqrt2`C. `sqrt3`D. `sqrt4`

Answer» Correct Answer - C
671.

If : `cos theta-sintheta=sqrt2.sin theta, "then": costheta+sintheta=`A. `sqrt2*csctheta`B. `sqrt2*sectheta`C. `sqrt2*costheta`D. `sqrt2*tantheta`

Answer» Correct Answer - C
672.

`(csc theta - sin theta)(sec theta - cos theta)(tan theta+ cot theta)=`A)1 B)0 C)`-1`D) 2A. `sin theta * cos theta * tan theta * csc theta * cot theta`B. 0C. -1D. 2

Answer» Correct Answer - A
673.

If : `sin 40^(@)-cos 70^(@)= k * cos 80^(@), "then" : k = `A)`sqrt1`B)`sqrt2`C)`sqrt3`D)`sqrt4`A. `sqrt1`B. `sqrt2`C. `sqrt3`D. `sqrt4`

Answer» Correct Answer - C
674.

If `Tan(picostheta)=cot(pisintheta)` then the value of (s) of `cos(theta-pi/4)` is(are)A. `(1)/(2)`B. `- (1)/(sqrt2)`C. `-(1)/(2sqrt2)`D. `(1)/(2sqrt2)`

Answer» Correct Answer - D
675.

If : `sin^(2) ((pi)/(4) + (theta)/(2)) - cos^(2) ((pi)/(4) + (theta)/(2))=` A)`sin theta` B)` cos theta` C)`sin 2 theta` D)`cos 2 theta`A. `sin theta`B. ` cos theta`C. `sin 2 theta`D. `cos 2 theta`

Answer» Correct Answer - A
676.

If `cos^(2)theta-sin^(2)theta=tan^(2)alpha,` `"then" : sqrt2 * cos theta * cos alpha=....`A) `sin theta * sin alpha`B)1 C)`tan^(2)theta` D)none of theseA. `sin theta * sin alpha`B. 1C. `tan^(2)theta`D. none of these

Answer» Correct Answer - B
677.

If `x= sin^(2)theta* cos theta and y=sin theta cos^(2)theta,"then" :`A. `(x^(2)y)^(2//3)=(xy^(2))^(2//3)=1`B. `(x^(2)y)^(2//3)=(y^(2)//x)^(2//3)=1`C. `x^(2)+y^(2)+x^(2)y^(2)`D. none of these

Answer» Correct Answer - B
678.

If : `cot theta =(a)/(b), "then" : a *cos 2 theta +b * sin 2 theta=` A)`a^(2) +b^(2)` B)`a^(2) - b^(2)` C)a D)bA. `a^(2) +b^(2)`B. `a^(2) - b^(2)`C. aD. b

Answer» Correct Answer - C
679.

`cos(54 0^(@)-theta)-sin(63 0^(@)-theta)` is equal to

Answer» Correct Answer - A
680.

If `sec theta=sqrt(2)a n d(3pi)/2

Answer» `sec theta = sqrt2`
As, `(3pi)/2 lt theta le (2pi)`
`:. theta = (7pi)/4`
Now, `(1+tantheta+cosectheta)/(1+cot theta- cosectheta)`
`=(1+tan((7pi)/4)+cosec((7pi)/4))/(1+cot ((7pi)/4)- cosec((7pi)/4))`
`=(1-1-sqrt2)/(1-1+sqrt2)`
`=-sqrt2/sqrt2 = -1`
`:. (1+tantheta+cosectheta)/(1+cot theta- cosectheta) =-1`
681.

If : `sin x +cos x = sin 2 x + cos 2 x , "where" 0 lt x le (pi)/(2), "then x":=`A. `(pi)/(2)`B. `(pi)/(3)`C. `(pi)/(4)`D. `(pi)/(6)`

Answer» Correct Answer - D
682.

If `cos e ctheta+cottheta=(11)/2`, then `t a ntheta=``(21)/(22)`(b) `(15)/(16)`(c) `(44)/(117)`(d) `(117)/(44)`A. `(21)/(22)`B. `(15)/(16)`C. `(44)/(117)`D. `(117)/(44)`

Answer» Correct Answer - C
683.

If `xsin45^@cos^2(60^@)=(tan^2(60^@)cosec30^@)/(sec45^@cot^2(30^@)), ` then x=A. 2B. 4C. 8D. 16

Answer» Correct Answer - D
684.

The number of solutions of equation `tanx+secx=2cosx` lying in the interval `[0, 2pi]` is

Answer» Correct Answer - C
Given equation, `" "tanx+secx=2cosx`
`rArr" "(sinx)/(cosx)+(1)/(cosx)=2cosx`
`rArr" "1+sinx=2cos^(2)x`
`rArr" " 1+sinx=2(1-sin^(2)x)`
`rArr" "1+sinx=2-2sin^(2)x`
`rArr" "2sin^(2)x+sinx-1=0`
`rArr" "2sin^(2)x+sinx-1=0`
`rArr" "2sinx(sinx+1)-1(sinx+1)=0`
`rArr" "(sinx+1)(2sinx-1)=0`
`rArr" "sinx+1=0 or (2sinx-1)=0`
`rArr" "sinx=-1, sinx=(1)/(2)`
`therefore" "x=(3pi)/(2), x= (pi)/(6)`
Hence, only two solutions possible.
685.

For any triangle ABC, prove that`(b+c)cos((B+C)/2)=acos((B-C)/2)`

Answer» We know,`a/sinA = b/sinB = c/sinC = k`
where, k is a constant.
`:. (b+c)/a = (k(sinB+sinC))/(ksinA)`
`= (sinB+sinC)/sinA`
`=(2sin((B+C)/2)cos((B-C)/2))/(2sinA/2cosA/2)`
As, `A+B+C = 180, So, B+C = 180-A`
`:. (b+c)/a=(sin((180-A)/2)cos((B-C)/2))/(sin((180-(B+C))/2)cosA/2)`
`=(sin(90-A/2)cos((B-C)/2))/(sin(90-(B+C)/2)cosA/2)`
`=(cos(A/2)cos((B-C)/2))/(cos((B+C)/2)cosA/2)`
`(b+c)/a= (cos((B-C)/2))/(cos((B+C)/2))`
So, `(b+c)(cos((B+C)/2)) = a(cos((B-C)/2))`
686.

If in a triangle `A B C ,acos^2(C/2)ccos^2(A/2)=(3b)/2,`then the sides `a ,b ,a n dc```are in A.P.b. are in G.P.c. are in H.P. d. satisfy `a+b=cdot`A. A.PB. G.PC. H.P.D. A.G.P.

Answer» Correct Answer - A
687.

In a `DeltaABC`, `a(cos^(2)B+cos^(2)C)+cosA(ccosC+bcosB)=`A. `a+b+c`B. `c`C. `b`D. `a`

Answer» Correct Answer - D
688.

In `triangleABC, a(b^(2)+c^(2))cosA+b(c^(2)+a^(2))cosB+c(a^(2)+b^(2))cosC=`A. `0`B. `3abc`C. `3a^(2)bc`D. `3ab^(2)c`

Answer» Correct Answer - B
689.

In `triangleABC, (b+c)cosA+(c+a)cosB+(a+b)cosC=`A. `a+b+c`B. `2(a+b+c)`C. `(a+b+c)/(2)`D. `(a+b+c)/(4)`

Answer» Correct Answer - A
690.

IN `triangleABC, (cosC+cosA)/(c+a)+(cosB)/(b)=`A. `(1)/(a)`B. `(1)/(b)`C. `(1)/(c)`D. `(a+b)/(b)`

Answer» Correct Answer - B
691.

In a `DeltaABC`, cosecA(sinBcosC+cosBsinC)` is equal toA. `1`B. `(a)/(c)`C. `(c)/(a)`D. `(c)/(ab)`

Answer» Correct Answer - A
692.

If `a^(2),b^(2)` and `c^(2)` are in AP, then cotA, cotB and cotC are inA. A.PB. G.PC. H.P.D. A.G.P.

Answer» Correct Answer - A
693.

In `triangleABC, (cosA)/(c cosB+bcosC)+(cosB)/(acosC+ccosA)+(cosC)/(acosB+bcosA)=`A. `(a^(2)+b^(2)-c^(2))/(4)`B. `(a^(2)+b^(2)-c^(2))/(2)`C. `(a^(2)+b^(2)+c^(2))/(4abc)`D. `(a^(2)+b^(2)+c^(2))/(2abc)`

Answer» Correct Answer - D
694.

Find the length of an arc of a circle of radius 5cm subtending acentral angle measuring `15^0dot`

Answer» Length of an arc is given by ,
`l = pi/180*r *theta`
Here, `r = 5cmand theta = 15^@`
`:. l = pi/180*5*15 = (5pi)/12 cm`
So, the length of the arc is `(5pi)/12 cm`.
695.

General solution of `3sec^(2)x=4` isA. `npipm(pi)/(6), ninZ`B. `npipm(5pi)/(6), ninZ`C. `npipm(7pi)/(6), ninZ`D. `npipm(11pi)/(6), ninZ`

Answer» Correct Answer - A
696.

If `sin^(- 1)(x)+sin^(- 1)(2x)=pi/3` then `x=`A. `(sqrt(3))/(2sqrt(7))`B. `(1)/(2)`C. `(1)/(sqrt(2)`D. `(sqrt(3))/(2)`

Answer» Correct Answer - A
697.

If `cos(2sin^(-1)x)=1/9,`then find the values of `xdot`A. `(4)/(9)`B. `pm(2)/(3)`C. `(2)/(3)`D. `(-2)/(3)`

Answer» Correct Answer - B
698.

For `0le|x|lesqrt(2)`, if `cos^(-1)(x^(2)-(x^(4))/(2)+(x^(6))/(4)-…)+sin^(-1)(x-(x^(2))/(2)+(x^(3))/(4))-…)=(pi)/(2)`, then x=A. `(-1)/(2)`B. `(1)/(2)`C. `-1`D. `1`

Answer» Correct Answer - D
699.

In quadrilateral `A B C D ,`if`sin((A+B)/2)cos((A-B)/2)+"sin"((C+D)/2)cos((C-D)/2)=2`then find the value of `sinA/2sinB/2sinC/2sinD/2dot`

Answer» `1/2[2sin((A+B)/2)cos((A-B)/2)+2sin((C+D)/2)cos((C-D)/2)]=2`
`2sinCcosD=sin(C+D)+sin(C-D)`
`sinA+sinB+sinC+sinD=4`
`sinA-11=sinB=sinC=sinD`
`A=pi/2=B=C=D`
`sin(A/2)sin(B/2)sin(C/2)sin(D/2)`
`=sin^4pi/4=(1/sqrt2)^4=1/4`.
700.

`sin 3 alpha = 4 sin alpha sin(x + alpha) sin(x-alpha)`A. `npipm(pi)/(6), ninZ`B. `npipm(pi)/(4), ninZ`C. `npipm(pi)/(3), ninZ`D. `npipm(pi)/(2), ninZ`

Answer» Correct Answer - C