InterviewSolution
Saved Bookmarks
| 1. |
Find the least positive value of `x`satisfying`(sin^2 2x+4sin^4x-4sin^2xcos^2x)/4=1/9` |
|
Answer» `(sin^2 2x+4sin^4x - 4sin^2xcos^2x)/4 = 1/9` `=>((2sinxcosx)^2+4sin^4x - 4sin^2xcos^2x)/4 = 1/9` `=>(4sin^2xcos^2x+4sin^4x - 4sin^2xcos^2x)/4 = 1/9` `=>(4sin^4x)/4 = 1/9` `=>sin^4x = 1/9` `=>sinx = +-1/sqrt3` So, least positive value of `x` will be `sin^-1(1/sqrt3).` |
|