InterviewSolution
Saved Bookmarks
| 1. |
If `tanalpha`is equal to the integral solution of the inequality `4x^2-16 x+15 |
|
Answer» It is given that slope of bisector is`cos beta.` `:. cos beta = tan45^@ =>cos beta = 1->(1)` Now, `4x^2-16x+15 lt 0` `=>4x^2-10x-6x+15 lt 0` `=>2x(2x-5)-3(2x-5) lt 0` `=>(2x-3)(2x-5) lt 0` `:. 3/2 lt x lt 5` As, `tan alpha` is an integral solution for this inequality, `:. tanalpha = 2` `=>cotalpha = 1/2->(2)` Now, `sin(alpha+beta)sin(alpha-beta) = sin^2alpha-sin^2beta` `=1/(cosec^2alpha) - (1-cos^2beta)` `=1/(1+cot^2alpha)-1+cos^2beta` From (1) and (2), `1/(1+1/4) -1+1 = 4/5` So, option `d` is the correct option. |
|