Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

551.

`sin(sin^(-1)((1)/(3))+sec^(-1)(3))+cos(tan^(-1)(1/2)+tan^(-1)2)`=A. `1`B. `2`C. `0`D. `-1`

Answer» Correct Answer - A
552.

If : `(tan 3 A+tan A)/(tan 3A - tanA)=(sin(mA)/(sin(nA)))` then `(m,n)=` (a) (2,3) (b)(3,4) (c)(4,2) (d) (1,2)A. (2,3)B. (3,4)C. (4,2)D. (1,2)

Answer» Correct Answer - C
553.

If `cos^(2)A+cos^(2)B+cos^(2)C=1`, then `triangle ABC` isA. equilateralB. isoscelesC. right angledD. right angled isosceles

Answer» Correct Answer - D
554.

In `triangleABC, (a-b)/(a+b)=`A. `cot((A-B)/(2))cot((A+B)/(2))`B. `tan((A-B)/(2))cot((A+B)/(2))`C. `cot((A-B)/(2))tan((A+B)/(2))`D. `tan((A-B)/(2))tan((A+B)/(2))`

Answer» Correct Answer - B
555.

In `triangleABC`, if `a=sqrt(3)+1, b=sqrt(3)-1 and angleC=60^(@)`, then c=A. `sqrt(6)`B. `-sqrt(6)`C. `2`D. `4`

Answer» Correct Answer - A
556.

Solve, `(sec^- 1)x/a-(sec^- 1)x/b=sec^- 1 b-sec^(- 1)a.`A. `1`B. `pq`C. `(p)/(q)`D. `(q)/(p)`

Answer» Correct Answer - B
557.

Find the value of `tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))`A. `(pi)/(4)`B. `(pi)/(3)`C. `(pi)/(2)`D. `(pi)/(4) or (-3pi)/(4)`

Answer» Correct Answer - A
558.

In `triangleABC`, If `(b+c)/(11)=(c+a)/(12)=(a+b)/(13)`, then `cosC=`A. `(5)/(7)`B. `(7)/(5)`C. `(16)/(17)`D. `(17)/(16)`

Answer» Correct Answer - A
559.

In ` A B C ,=`if `(a+b+c)(a-b+c)=3a c ,`then find `/_Bdot`A. `angleB=30^(@)`B. `angleB=60^(@)`C. `angleB=100^(@)`D. `angleB=90^(@)`

Answer» Correct Answer - B
560.

In `triangleABC,` if `a=2, b=1, c=sqrt(3)`, then `angleA=`A. `90^(@)`B. `60^(@)`C. `30^(@)`D. `45^(@)`

Answer» Correct Answer - A
561.

In any `DeltaABC`, prove that `a(bcosC-c cosB)=(b^(2)-c^(2))`A. `c^(2)-b^(2)`B. `b^(2)-c^(2)`C. `2(c^(2)-b^(2))`D. `2(b^(2)-c^(2))`

Answer» Correct Answer - B
562.

In `triangleABC`, if `a=sqrt(3)+1, b=sqrt(3)-1 and angleC=60^(@)`, then `angleA`=A. `45^(@)`B. `105^(@)`C. `15^(@)`D. `60^(@)`

Answer» Correct Answer - B
563.

In `triangleABC,` if `a=2, b=1, c=sqrt(3)`, then `angleB=`A. `90^(@)`B. `60^(@)`C. `30^(@)`D. `45^(@)`

Answer» Correct Answer - C
564.

In `triangleABC` , if a=2,b=3 and `sinA=2/3`, then `angleB=`A. `30^(@)`B. `45^(@)`C. `60^(@)`D. `90^(@)`

Answer» Correct Answer - D
565.

In `triangleABC`, If `(1)/(b+c)+(1)/(c+a)=(3)/(a+b+c)`, then `cosC=`A. `(1)/(2)`B. `(-1)/(2)`C. `(sqrt(3))/(2)`D. `(1)/(sqrt(2))`

Answer» Correct Answer - A
566.

`(tan^(- 1)(sqrt(3))-sec^(- 1)(-2))/(cosec^(- 1)(-sqrt(2))+cos^(- 1)(-1/2)) =`A. `(4)/(5)`B. `(-4)/(5)`C. `(3)/(5)`D. `0`

Answer» Correct Answer - B
567.

If `tan^(-1)x+cos^(-1)((y)/(sqrt(1+y^(2))))=sin^(-1)((3)/(sqrt(10)))`, thenA. `x=2, y=1`B. `x=2, y=3`C. `x=3, y=2`D. `x=1, y=2`

Answer» Correct Answer - D
568.

In `triangleABC`, If the angles are in A.P., and `b:c=sqrt(3):sqrt(2)`, then `angleA, angleB, angleC` areA. `30^(@), 60^(@), 90^(@)`B. `50^(@), 60^(@), 70^(@)`C. `75^(@), 60^(@), 45^(@)`D. `15^(@), 60^(@), 105^(@)`

Answer» Correct Answer - C
569.

In `triangleABC`, if `a=72, angleB=108^(@), angleA=25^(@)`, then c=A. `162.04`B. `162.14`C. `124.61`D. `124.16`

Answer» Correct Answer - C
570.

In `triangleABC`, if `a^(2)+c^(2)-b^(2)=ac`, then `angleB=`A. `30^(@)`B. `45^(@)`C. `60^(@)`D. `90^(@)`

Answer» Correct Answer - C
571.

In `triangleABC,` If b=20, c=21 and sinA=(3)/(5)`, then a=A. `13`B. `14`C. `15`D. `16`

Answer» Correct Answer - A
572.

For any triangle ABC, prove that`(b^2-c^2)/(a^2)sin2A+(c^2-a^2)/(b^2)sin2B+(a^2-b^2)/(c^2)sin2C=0`

Answer» For any triangle ABC, we have,`sinA/a = sinB/b = sinC/c = k`->(1)
`cos A = (b^2+c^2-a^2)/(2bc), cosB = (c^2+a^2-b^2)/(2ca), cos C = (a^2+b^2-c^2)/(2ab)`->(2)
Now, we will solve our equation.
`L.H.S = (b^2-c^2)/a^2 *2sinAcosA+(c^2-a^2)/b^2*2sinBcosB+(a^2-b^2)/c^2*2sinCcosC`
From (1),
`=(b^2-c^2)/a^2*2kacosA+(c^2-a^2)/b^2*2kbcosB+(a^2-b^2)/c^2*2kccosC`
`=2k((b^2-c^2)/a*(b^2+c^2-a^2)/(2bc)+(c^2-a^2)/b*(c^2+a^2-b^2)/(2ca)+(a^2-b^2)/c*(a^2+b^2-c^2)/(2ab))`
`=k/(abc)(b^4-c^4-a^2(b^2-c^2)+c^4-a^4-b^2(c^2-a^2)+a^4-b^4-c^2(a^2-b^2))`
`=k/(abc)(0) = 0= R.H.S.`
573.

`cos^(-1)sqrt(1-x)+sin^(-1)sqrt(1-x)=`A. `(pi)/(4)`B. `1`C. `pi`D. `(pi)/(2)`

Answer» Correct Answer - D
574.

In `triangleABC`, If `angleA=25^(@), angleB=85^(@) and c=3,4`, then b=A. `3.0604`B. `3.604`C. `1.0529`D. `1.529`

Answer» Correct Answer - B
575.

prove that: ` 4 cot^2(45^ @) - sec^2(60^ @)+ sin^2(30^ @) = 1/8`A. `(1//2)`B. `(1//2)^(2)`C. `(1//2)^(3)`D. `(1//2)^(4)`

Answer» Correct Answer - C
576.

`cos^(-1)((3)/(5))+cos^(-1)((4)/(5))=`A. `(3pi)/(2)`B. `(pi)/(2)`C. `(-pi)/(2)`D. `0`

Answer» Correct Answer - B
577.

In `triangleABC`, if `a=3, b=4, c=5,` then `sin2B=`A. `(3)/(5)`B. `(4)/(5)`C. `(24)/(25)`D. `(12)/(25)`

Answer» Correct Answer - C
578.

Find the acute angle A and B such that `sec A * tan B -sec A -2 tan B+2=0.`A. `(60^(@),45^(@))`B. `(45^(@),30^(@))`C. `(30^(@),45^(@))`D. `(30^(@),60^(@))`

Answer» Correct Answer - A
579.

prove that: `sin^2 3 0^(@)+sin^2 4 5^(@)+sin^2 6 0^(@)=3/2`A. `2//3`B. `3//2`C. 13D. `3//4`

Answer» Correct Answer - B
580.

If `tan^(2) theta-4sqrt3 * tan theta+3=0,"then" : tan theta=`A. `sqrt2`B. `1//sqrt2`C. `1//sqrt3`D. 2

Answer» Correct Answer - C
581.

Find the angle between the minute hand and the hour hand of a clockwhen the time is 7:20 AM.

Answer» Angle made by minute hand in `20` minutes `= 360/60**20 = 120^@`
Now, hour hand makes an angle `360^@` in `720` minutes.
Total number of minutes at `7:20` AM `= 7**60+20 = 440`
So, angle made by hour hand at `7:20` AM `= 360/720**440 = 220^@`
`:.` Angle made between the minute hand and the hour hand at `7:20` AM `=220-120 = 100^@`
582.

If `A+B+C=pi,`prove that `tan^2A/2+tan^2B/2+tan^2C/2geq1.`

Answer» `(tan (A/2) - tan(B/2))^2 + (tan(B/2) - tan(C/2))^2 +(tan(C/2) - tan(A/2))^2 ge 0`
`=>2(tan^2(A/2)+tan^2(B/2)+tan^2(C/2)) - 2(tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)) ge 0->(1)`
Now,
`tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)`
`=tan(A/2)[tan(B/2)+tan(C/2)]+tan(B/2)tan(C/2)`
`=tan(A/2)[tan((B/2)+(C/2))(1-tan(B/2)tan(C/2)]+tan(B/2)tan(C/2)`
`=tan(A/2)[tan((B+C)/2)(1-tan(B/2)tan(C/2)]+tan(B/2)tan(C/2)`
`=tan(A/2)[tan((pi-A)/2)(1-tan(B/2)tan(C/2)]+tan(B/2)tan(C/2)`
`=tan(A/2)[tan(pi/2-A/2)(1-tan(B/2)tan(C/2)]+tan(B/2)tan(C/2)`
`=tan(A/2)cot(A/2)(1-tan(B/2)tan(C/2))+tan(B/2)tan(C/2)`
`=1-tan(B/2)tan(C/2)+tan(B/2)tan(C/2)`
`=1`
`=>tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2) = 1->(2)`
From (1) and (2),
`=>2(tan^2(A/2)+tan^2(B/2)+tan^2(C/2)) - 2 ge 0`
`=>2(tan^2(A/2)+tan^2(B/2)+tan^2(C/2)) ge 2`
`=>tan^2(A/2)+tan^2(B/2)+tan^2(C/2) ge 1`
583.

A circular ring of radius 3cm hangs horizontally form a point 4cm vertically above the centre by 4 strings attached at equal intervals to its circumference. If the angle between two consecutive strings be `theta` , then `costheta` is equal to(A)`4/5`(B) `4/(25)`(C) `(16)/(25)`(D) none of these

Answer» OP=4cm
OA=OB=OC=OD=3cm
`(OA)^2+(OP)^2=(AP)^2`
`AP^2=3^3+4^2=25`
`AP=5cm`
AP=BP=DP=CP=5cm
`AB^2+BC^2=AC^2`
`2AB^2=6^2`
`AB=6/sqrt2=3sqrt2`
`AB=BC=CD=AD=3sqrt2cm`
`sin(theta/2)=1/2*(BC)/(BP)=(3sqrt2)/5=3/(5sqrt2)`
`cos2A=1-2sin^2A`
`costheta=1-2(9/(25*2))`
`costheta=16/25`
Option D is correct.
584.

`tan 75^(@)+ tan 15^(@)=`A)1B)2C)3D)4A. 1B. 2C. 3D. 4

Answer» Correct Answer - D
585.

The value of `cos 1^@ cos 2^@ cos 3^@... cos 179^@` isA. `(1)/(sqrt(2))`B. 0C. 1D. -1

Answer» Correct Answer - B
Given expression, `cos1^(@) cos2^(@) cos3^(@)...cos179^(@)`
`" "=cos1^(@)cos2^(@)...cos90^(@)...cos179^(@)" "[becausecos90^(@)=0]` ltBrgt =0
586.

`Tan 75 - Cot 75=`A. `2sqrt(3)`B. `2+sqrt(3)`C. `2-sqrt(3)`D. 1

Answer» Correct Answer - A
Given expression, `tan75^(@)-cot75^(@)`
`" "=(sin75^(@))/(cos75^(@))-(cos75^(@))/(sin75^(@))`
`" "=(sin^(2)75^(@)-cos^(2)75^(@))/(sin75^(@)*cos75^(@))`
`" "=(-2cos150^(@))/(sin150^(@))`
`" "=(-2cos(90^(@)+60^(@)))/(sin(90^(@)+60^(@)))` ltBrgt `" "=(+2sin60^(@))/(cos60^(@))`
`" "=(2*(sqrt(3))/(2))/((1)/(2))=2sqrt(3)`
587.

PQ is a vertical tower having P as the foot. A,B,Care three points in the horizontal plane through P. The angles of elevationof Q from A,B,C are equal and each is equal to `theta`. The sides of the triangle ABC are a,b,c, and area of the triangle ABCis ``. Then prove that the height of the tower is (abc) `tantheta/(4)dot`

Answer» Let `h` is the height of the tower.
Then,
`AP = BP = CP = hcot theta`
Please refer to video to see the diagram.
Here, `P` is the circumcenter of `Delta APC`.
`:. AP = BP = CP = R = (abc)/(4Delta)`
`=>(abc)/(4Delta) = hcottheta`
`=>h = 1/cottheta(abc)/(4Delta)`
`=>h = (abc)tantheta/(4Delta).`
So, height of the tower is ` (abc)tantheta/(4Delta).`
588.

In a `DeltaP Q R`, if `3""s in""P""+""4""cos""Q""=""6`and `4""s in""Q""+""3""cos""P""=""1`, then the angle R is equal to(1) `(5pi)/6`(2) `pi/6`(3) `pi/4`(4) `(3pi)/4`

Answer» `P + Q+R = pi`
`3 sin P + 4 cos Q =6 (i) ; 4 sin Q + 3 cos P= 1 (ii)`
`R < pi/2`
eqn `(i)^2 + (ii)^2:`
`9sin^2 P + 24sinPcos Q + 16cos^2 Q+ 16sin^2 Q+ 24sin QcosP + 9cos^2 P= 36 +1 `
`9 + 16 + 24 (sin Pcos Q + cos P sin Q) = 37`
`25 + 24 (sin(P+Q))= 37`
`sin(P +Q) = (37-25)/24= 1/2`
`(P+Q) = pi/6 or 5 pi/6 `
`R = pi - (P+Q) = pi/6`
as `5pi/6` not possible
option 1 is correct
589.

If `tantheta=3` and `theta` lies in third quadrant then `sintheta=`A. `(1)/(sqrt(10))`B. `-(1)/(sqrt(10))`C. `(-3)/(sqrt(10))`D. `(3)/(sqrt(10))`

Answer» Correct Answer - C
Given that, `" "tantheta=3`
`rArr" "sec^(2)theta=1+tan^(2)theta`
`rArr" "sectheta=sqrt(1+9)=pmsqrt(10)`
`rArr" "sectheta=-sqrt(10)`
` rArr" "costheta=-(1)/(sqrt(10))`
`rArr" "sintheta=pmsqrt(1-(1)/(10))=pmsqrt((9)/(10))=pm(3)/(sqrt(10))" "` [since, `theta` lines in third quadrant]
` therefore" "sintheta=-(3)/(sqrt(10))`
590.

The period of `cosx^2` is

Answer» A function is periodic if `f(x) = f(x+T)`.
Let us assume that `cos(x^2)` has a period of T. In that case:
`cos(x+T)^2 = cosx^2`
`=>(x+T)^2 = 2npi+x^2`
`=>x^2+T^2+2xT= 2npi+x^2`
`=>T^2+2xT-2npi = 0`
As we can see, `T` is dependent on the value of `x` and hence, is not a constant. So `cos(x^2)` is not periodic.
So, we can say that period of `cosx^2` does not exist.
591.

The angle of elevation of to be top point `P`of the vertical tower PQ of height `h`from poin A is `45^0`and from a point B, the angle of elevation is `60^0,`where B is point at a distance `d`from the point A measured along the line `A B`which makes an angle `30^0`with AQ. Prove that `d=(sqrt(3)-1)hdot`

Answer» `cosc=(a^2+b^2-c^2)/(2ab)`
`=(7^2+8^2-9^2)/(2*7*8)`
`=2/7`
`BM^2=BC^2+CM^2-2BC*CM*cosc`
`=7^2+4^2-2*7*4*2/7`
`=49`
`BM=7`
`In/_BMP`
`h/(BM)=tan15^o`
`h=BMtan15^o`
`=7tan15^o-(1)`
`tan30^o=(2tan15^o)/(1-tan^215^o`
`x=tan15^o`
`1/sqrt3=(2x)/(1-x^2)`
`1-x^2=2/3x`
`x=(-2sqrt3pmsqrt((2sqrt3)^2+4))/2`
`x=(-2sqrt3pm4)/2`
`2-sqrt3`
putting this value in equation 1
`=7(2-sqrt3)m`
592.

A vertical pole with height more than 100 m consists of two parts, the lower being one-third of the whole. At a point on a horizontal plane through the foot and 40 m from it,the upper part subtends an angle whose tangent is `1/2` What is the height of the pole

Answer» `tanphi=x/(3*40)`
`tan(theta+phi)=x/40`
`tantheta=1/2`
`(tantheta+tanphi)/(1-tantheta*tanphi)=x/40`
`((1/2)+(x/120))/(1-(1/2*x/120))=x/40`
`(cotx/120)/((240-x)/240)=x/40`
`(2(60+x))/(140-x)=x/40`
`80(60+x)=x(240-x)`
`x^2-160x+4800=0`
`(x-120)(x-40)=0`
`x=40,120`.
593.

ABis a vertical pole with B at the ground level and A at the top. A man findsthat the angle of elevation of the point A from a certain point C on theground is `60o`.He moves away from the pole along the line BC to a point D such that `C D""=""7""m`.From D the angle of elevation of the point A is `45o`.Then the height of the pole is(1) `(7sqrt(3))/2dot1/(sqrt(3)-1)m`(2) `(7sqrt(3))/2dot(sqrt(3)+1)m`(3) `(7sqrt(3))/2dot(sqrt(3)-1)m`(4) `(7sqrt(3))/2dot1/(sqrt(3)+1)m`

Answer» `BC=x`
`AB=y`
`tan60^@=AB/BC=y/x`
`sqrt3=y/x`
`x=y/sqrt3`
`tan45^@=(AB)/(BD)=(AB)/(DC+CB)`
`=y/(7+x)`
`=1`
`y=7+x`
`y=7+y/sqrt3`
`y-y/sqrt3=7`
`y(sqrt3-1)=7sqrt3`
`y=(7sqrt3)/(sqrt3-1)xx(sqrt3+1)/(sqrt3+1)`
`=(7sqrt3)/(3-1)xx(sqrt3+1)`
`=(7sqrt3)/(2)xx(sqrt3+1)`
option`2`
594.

if `3sec^4theta + 8 = 10sec^2theta` , then find the value of `tantheta`

Answer» `sec^2theta-tan^2theta=1`
`sec^2theta=1+tan^2theta`
`3(sec^2theta)^2+8=10sec^2theta`
`3(1+tan^2theta)^2+8=10(1+tan^2theta)`
`Let tan^2theta=t`
`3(1+t)^2+8=10(1+t)`
`3(1+t^2+2t)+8=10+10t`
`3+3t^2+6t+8=10+10t`
`3t^2+(6t-10t)+(8+3-10)=0`
`3t^2-4t+1=0`
`3t^2-3t-t+1=0`
`3t(t-1)-1(t-1)=0`
`(t-1)(3t-1)=0`
`t=1,1/3`
`tan^2theta=1,1/3`
`tantheta=pm1,pm1/sqrt3`
`tantheta=1,-1,1/sqrt3,-1/sqrt3`.
595.

`3sec^4theta+8=10sec^2theta` then find the value of `tantheta`

Answer» `3sec^4theta +8 = 10sec^2theta`
`=>3(1+tan^2theta)^2 +8 -10(1+tan^2theta) = 0`
Let `tan^2 theta = x`, then,
`=>3(1+x)^2+8 -10(1+x)= 0`
`=>3(1+x^2+2x)-10-10x +8 = 0`
`=>3x^2-4x +1 = 0`
`=>3x^2-3x -x +1 = 0`
`=>3x(x-1)-1(x-1) = 0`
`=>(3x-1)(x-1) = 0`
`=>x = 1/3 or x = 1`
`=>tan^2theta = 1/3 or tan theta = 1`
`=>tantheta = +-1/sqrt3 or tan theta = +-1.`
596.

If `sec^4theta+sec^2theta=10+tan^4theta+tan^2theta", then "sin^2theta=`A. `2/3`B. `3/4`C. `4/5`D. `5/6`

Answer» Correct Answer - C
`sec^4theta+sec^2theta=10+tan^4theta+tan^2theta`
`rArrsec^4theta-tan^4theta+sec^4theta-tan^2theta=10`
`rArr sec^2theta+tan^2theta+1=10`
`rArr2sec^2theta=10`
`rArrcos^2theta=1/5`
`rArr sin^2theta=4/5`
597.

There exists a value of `theta`between 0 and `2pi`that satisfies the equation `sin^4theta-2sin^2theta-1=0`

Answer» `sin^4theta-2sin^2theta-1=0`
Let `sin^2theta=y`
`y^2-2y-1=0`
`y=(-(-2)pmsqrt(4-4(1)(-1)))/2`
`y=(2pmsqrt8)/2`
`y=(2pm2sqrt2)/2`
`sin^2theta=1pmsqrt2`
`sin^2theta=1+sqrt2`
`sin^2theta=1+1.414`
`sin^2theta=2.414`
`sintheta=pmsqrt2.414`
`sintheta=pm1.55`
There is no value of `theta`.
598.

Prove that `(a^2sin(B-C))/(sinb+sinC)+(b^2"sin"(C-A))/(sinC+sinA)+(c^2"sin"(A-B))/(sinA+sinB)=0`

Answer» `(a^2sin(B-C))/(sinB+sinC) = ((2RsinA)^2 sin(B-C))/(sinB+sinC)`
`=(4R^2sin^2Asin(B-C))/(sinB+sinC)`
`=(4R^2sinA*sinAsin(B-C))/(sinB+sinC)`
`=(4R^2sinA*sin(pi-(B+C)sin(B-C))/(sinB+sinC)`
`=(4R^2sinA*sin(B+C)sin(B-C))/(sinB+sinC)`
`=(4R^2sinA*(sin^2B-sin^2C))/(sinB+sinC)`
`=(4R^2sinA*(sinB+sinC)(sinB-sinC))/(sinB+sinC)`
`=4R^2sinA(sinB-sinC)`
Similarly,
`(b^2sin(C-A))/(sinC+sinA) =4R^2sinB(sinC-sinA)`
`(c^2sin(A-B))/(sinA+sinB) =4R^2sinC(sinA-sinB)`
`:. L.H.S. = (a^2sin(B-C))/(sinB+sinC) +(b^2sin(C-A))/(sinC+sinA)+(c^2sin(A-B))/(sinA+sinB) = 4R^2[sinAsinB -sinAsinC+sinBsinC-sinBsinA+sinCsinA-sinCsinB]`
`=4R^2[0] = 0 = R.H.S.`
599.

Given `A=sin^2theta+cos^4theta,`then for all real `theta,`(a)`1lt=Alt=2`(b) `3/4lt=Alt=1`(c)`(13)/(16)lt=Alt=1`(d) `3/4lt=Alt=(13)/(16)`

Answer» `A = sin^2theta+cos^4theta`
`=>A = 1-cos^2theta+cos^4theta`
`=>A= 1-cos^2theta(1-cos^2theta)`
`=>A= 1-cos^2theta(sin^2theta)`
`=>A= 1-1/4(2sinthetacostheta)^2`
`=>A= 1-1/4sin^2 2theta`
Now, we know, `0 le sin^2 2theta le 1`
`=>0 le 1/4sin^2 2theta le 1/4`
`=>3/4 le 1- 1/4sin^2 2theta le 1`
`=>3/4 le A le 1`
So, option - `(b)` is the correct option.
600.

Solve : `5cos2theta+2cos^2(theta/2)+1=0,-pi lt theta lt pi`

Answer» `5cos2theta+2cos^2(theta/2)+1=0`
`5(2cos^2theta-1)+(1+costheta+1=0`
`10cos^2theta-5+1+costheta+1=0`
`10cos^2theta+costheta-3=0`
`10cos^2theta+6costheta-5costheta-3=0`