InterviewSolution
Saved Bookmarks
| 1. |
There exists a value of `theta`between 0 and `2pi`that satisfies the equation `sin^4theta-2sin^2theta-1=0` |
|
Answer» `sin^4theta-2sin^2theta-1=0` Let `sin^2theta=y` `y^2-2y-1=0` `y=(-(-2)pmsqrt(4-4(1)(-1)))/2` `y=(2pmsqrt8)/2` `y=(2pm2sqrt2)/2` `sin^2theta=1pmsqrt2` `sin^2theta=1+sqrt2` `sin^2theta=1+1.414` `sin^2theta=2.414` `sintheta=pmsqrt2.414` `sintheta=pm1.55` There is no value of `theta`. |
|