InterviewSolution
Saved Bookmarks
| 1. |
The angle of elevation of to be top point `P`of the vertical tower PQ of height `h`from poin A is `45^0`and from a point B, the angle of elevation is `60^0,`where B is point at a distance `d`from the point A measured along the line `A B`which makes an angle `30^0`with AQ. Prove that `d=(sqrt(3)-1)hdot` |
|
Answer» `cosc=(a^2+b^2-c^2)/(2ab)` `=(7^2+8^2-9^2)/(2*7*8)` `=2/7` `BM^2=BC^2+CM^2-2BC*CM*cosc` `=7^2+4^2-2*7*4*2/7` `=49` `BM=7` `In/_BMP` `h/(BM)=tan15^o` `h=BMtan15^o` `=7tan15^o-(1)` `tan30^o=(2tan15^o)/(1-tan^215^o` `x=tan15^o` `1/sqrt3=(2x)/(1-x^2)` `1-x^2=2/3x` `x=(-2sqrt3pmsqrt((2sqrt3)^2+4))/2` `x=(-2sqrt3pm4)/2` `2-sqrt3` putting this value in equation 1 `=7(2-sqrt3)m` |
|