InterviewSolution
Saved Bookmarks
| 1. |
If `A+B+C=pi,`prove that `tan^2A/2+tan^2B/2+tan^2C/2geq1.` |
|
Answer» `(tan (A/2) - tan(B/2))^2 + (tan(B/2) - tan(C/2))^2 +(tan(C/2) - tan(A/2))^2 ge 0` `=>2(tan^2(A/2)+tan^2(B/2)+tan^2(C/2)) - 2(tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)) ge 0->(1)` Now, `tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)` `=tan(A/2)[tan(B/2)+tan(C/2)]+tan(B/2)tan(C/2)` `=tan(A/2)[tan((B/2)+(C/2))(1-tan(B/2)tan(C/2)]+tan(B/2)tan(C/2)` `=tan(A/2)[tan((B+C)/2)(1-tan(B/2)tan(C/2)]+tan(B/2)tan(C/2)` `=tan(A/2)[tan((pi-A)/2)(1-tan(B/2)tan(C/2)]+tan(B/2)tan(C/2)` `=tan(A/2)[tan(pi/2-A/2)(1-tan(B/2)tan(C/2)]+tan(B/2)tan(C/2)` `=tan(A/2)cot(A/2)(1-tan(B/2)tan(C/2))+tan(B/2)tan(C/2)` `=1-tan(B/2)tan(C/2)+tan(B/2)tan(C/2)` `=1` `=>tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2) = 1->(2)` From (1) and (2), `=>2(tan^2(A/2)+tan^2(B/2)+tan^2(C/2)) - 2 ge 0` `=>2(tan^2(A/2)+tan^2(B/2)+tan^2(C/2)) ge 2` `=>tan^2(A/2)+tan^2(B/2)+tan^2(C/2) ge 1` |
|