InterviewSolution
Saved Bookmarks
| 1. |
if `3sec^4theta + 8 = 10sec^2theta` , then find the value of `tantheta` |
|
Answer» `sec^2theta-tan^2theta=1` `sec^2theta=1+tan^2theta` `3(sec^2theta)^2+8=10sec^2theta` `3(1+tan^2theta)^2+8=10(1+tan^2theta)` `Let tan^2theta=t` `3(1+t)^2+8=10(1+t)` `3(1+t^2+2t)+8=10+10t` `3+3t^2+6t+8=10+10t` `3t^2+(6t-10t)+(8+3-10)=0` `3t^2-4t+1=0` `3t^2-3t-t+1=0` `3t(t-1)-1(t-1)=0` `(t-1)(3t-1)=0` `t=1,1/3` `tan^2theta=1,1/3` `tantheta=pm1,pm1/sqrt3` `tantheta=1,-1,1/sqrt3,-1/sqrt3`. |
|