InterviewSolution
Saved Bookmarks
| 1. |
The number of solutions of equation `tanx+secx=2cosx` lying in the interval `[0, 2pi]` is |
|
Answer» Correct Answer - C Given equation, `" "tanx+secx=2cosx` `rArr" "(sinx)/(cosx)+(1)/(cosx)=2cosx` `rArr" "1+sinx=2cos^(2)x` `rArr" " 1+sinx=2(1-sin^(2)x)` `rArr" "1+sinx=2-2sin^(2)x` `rArr" "2sin^(2)x+sinx-1=0` `rArr" "2sin^(2)x+sinx-1=0` `rArr" "2sinx(sinx+1)-1(sinx+1)=0` `rArr" "(sinx+1)(2sinx-1)=0` `rArr" "sinx+1=0 or (2sinx-1)=0` `rArr" "sinx=-1, sinx=(1)/(2)` `therefore" "x=(3pi)/(2), x= (pi)/(6)` Hence, only two solutions possible. |
|