InterviewSolution
Saved Bookmarks
| 1. |
Let `A=sinx+cosxdot`Then find the value of `sin^4x+cos^4x`in terms of `Adot` |
|
Answer» `A=sinx+cosx` `A^2=sin^2x+cos^2x+2sinxcosx` `A^2=(A^2/2-1)` `sin^4x+cos^4x=(sin^2x)^2+(cos^2x)^2` `=(sin^2x+cos^2x)^2-2sin^2xcos^2x` `=1-2(sinxcosx)^2` `=1-2*(A^2-1)^2/4` `=(2-(A^2-1)^2)/2`. |
|