

InterviewSolution
Saved Bookmarks
1. |
Let`(sin(theta-alpha))/("sin"(theta-beta))=a/b a n d(cos(theta-alpha))/("cos"(theta-beta))=c /d t h e n(a c+b d)/(a d+b c)=`(a)`cos(alpha-beta)`(b) `sin(alpha-beta)``sin(alpha+beta)`(d) none of these |
Answer» `sin(theta-alpha)/(sin(theta-beta)) = a/b` `=>a/sin(theta-alpha) = b/(sin(theta-beta)) ` Let `a/sin(theta-alpha) = b/(sin(theta-beta)) = k_1` `=>a = k_1sin(theta-alpha), b = k_1sin(theta-beta)` Similarly, `=>c = k_2cos(theta-alpha), d = k_2cos(theta-beta)` Now, `(ac+bd)/(ad+bc) = (k_1sin(theta-alpha)k_2cos(theta-alpha)+k_1sin(theta-beta)k_2cos(theta-beta))/(k_1sin(theta-alpha)k_2cos(theta-beta)+k_1sin(theta-beta)k_2cos(theta-alpha))` `=(k_1k_2(sin(theta-alpha)cos(theta-alpha)+sin(theta-beta)cos(theta-beta)))/(k_1k_2(sin(theta-alpha)cos(theta-beta)+sin(theta-beta)cos(theta-alpha)))` `=(1/2(sin(2(theta-alpha))+sin(2(theta-beta))))/(sin(theta-alpha+theta-beta))` `=(sin(2(theta-alpha))+sin(2(theta-beta)))/(2sin(2theta-(alpha+beta))` `=(2sin((2(theta-alpha+theta-beta))/2)cos((2(theta-alpha-theta+beta))/2))/(2sin(2theta-(alpha+beta))` `=(2sin((2theta-(alpha+beta))cos(beta-alpha)))/(2sin(2theta-(alpha+beta))` `=cos(beta-alpha)` `=cos(-(beta-alpha))...[As cos(-theta) = cos theta]` `=cos(alpha-beta)` So, option `(a)` is the correct option. |
|