Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

Write the value of `sec^(2)theta(1+sin theta)(1-sin theta).`

Answer» Correct Answer - 1
Given expression `=sec^(2)theta(1-sin^(2)theta)=sec^(2)thetacos^(2)theta=1.`
52.

If `x=a sin theta+b cos theta and y=a cos theta -b sin theta, " prove that " x^(2)+y^(2)=a^(2)+b^(2).`

Answer» We have
` x^(2) + y^(2) = (a sin theta + b cos theta)^(2) + (a cos theta - b sin theta)^(2) `
` = a^(2)(sin^(2)theta + cos^(2)theta ) + b^(2)(cos^(2)theta + sin^(2)theta) `
`= a^(2) + b^(2) " " [ because sin^(2)theta + cos^(2)theta =1]. `
Hence, ` x^(2) + y^(2) = a^(2) + b^(2). `
53.

If ` sin theta + cos theta = m and sec theta + "cosec" theta = n, ` prove that ` n(m^(2)-1) = 2m. `

Answer» We have
` n(m^(2) -1) = ( sec theta + "cosec" theta )[( sin theta + cos theta)^(2) -1] `
` = ((1)/(cos theta) + (1)/(sin theta))[(sin^(2)theta + cos^(2)theta) + 2 sin theta cos theta -1 ] `
` =((sin theta + cos theta))/(sin theta cos theta) * 2 sin theta cos theta `
`=2(sin theta + cos theta)= 2m. `
Hence, `n(m^(2) -1) = 2m. `
54.

Prove that `(i) (tan A+ sin A)/(tan A- sin A)= (sec A+1)/(sec A-1) ` ` (ii) (cot A- cos A)/(cot A+ cos A)= ("cosec" A-1)/("cosec" A+1) `

Answer» We have
`(i) " LHS " = (tan A + sin A)/(tan A - sin A)`
` = ((sin A)/(cos A)+ sin A)/((sin A)/(cos A)- sin A)=(sin A((1)/(cos A)+1))/(sin A((1)/(cos A)-1)) `
` = (((1)/(cos A)+1))/(((1)/(cos A)-1))= (sec A+1)/(sec A-1)= " RHS. " `
` therefore " LHS " = " RHS. " `
`(ii) " LHS " = (cot A - cos A)/(cot A + cos A) `
` = ((cos A)/(sin A)- cos A)/((cos A)/(sin A)+ cos A)= (cos A((1)/(sin A)-1))/(cos A((1)/(sin A)+1))`
` =(((1)/(sin A)-1))/(((1)/(sin A)+1)) =(("cosec" A -1))/(("cosec" A +1))= "RHS. " `
` therefore " LHS " = " RHS. " `
55.

Prove that `(sin theta - cos theta +1)/(sin theta + cos theta -1) = (1)/((sec theta - tan theta)). `

Answer» LHS `=(sin theta - cos theta +1)/(sin theta + cos theta -1) `
` = ((sin theta)/(cos theta)-1 + (1)/(cos theta ))/((sin theta )/(cos theta) +1 - (1)/(cos theta)) `
[ on dividing num. and denom. by ` cos theta ` ]
` =(tan theta -1+ sec theta )/(tan theta +1 - sec theta )=((sec theta + tan theta -1))/((tan theta - sec theta +1)) `
` = ((sec theta + tan theta )-(sec^(2) theta - tan^(2) theta ))/((tan theta - sec theta +1)) " " [ because 1= sec^(2) theta - tan^(2) theta ] `
` =((sec theta + tan theta )[1- (sec theta - tan theta )])/((tan theta - sec theta +1)) `
` = ((sec theta + tan theta)(tan theta - sec theta +1))/((tan theta - sec theta +1))=(sec theta + tan theta). `
` RHS= (1)/((sec theta - tan theta)) `
` =(1)/((sec theta - tan theta))xx ((sec theta + tan theta ))/((sec theta + tan theta )) = ((sec theta + tan theta ))/((sec^(2)theta - tan^(2)theta))`
`= (sec theta + tan theta) " "[ because sec^(2)theta - tan^(2)theta =1].`
Hence,` LHS = RHS. `
56.

If `x=asinthetaa n dy=btantheta,`then prove that `(a^2)/(x^2)-(b^2)/(y^2)=1`

Answer» We have
` x= a sin theta rArr (a)/(x)=(1)/(sin theta) rArr (a)/(x) = "cosec" theta " "...(i) `
` and y= b tan theta rArr (b)/(y)= (1)/(tan theta) rArr (b)/(y) = cot theta. " "...(ii) `
Squaring (i) and (ii) and subtracting, we get
`((a^(2))/(x^(2))- (b^(2))/(y^(2)))= ( "cosec"^(2)theta - cot^(2)theta ) =1. `
Hence, ` ((a^(2))/(x^(2))- (b^(2))/(y^(2)))=1. `
57.

If `sec theta + tan theta = m, ` show that ` ((m^(2) -1))/((m^(2) +1)) = sin theta . `

Answer» We have
`(m^(2) -1)=(sec theta + tan theta)^(2) -1 `
` = sec^(2) theta + tan^(2)theta + 2sec theta tan theta -1 `
` = (sec^(2)theta -1) + tan^(2)theta + 2 sec theta tan theta `
`= 2 tan^(2)theta + 2sec theta tan theta " " [ because sec^(2)theta -1 = tan^(2)theta] `
` = 2 tan theta(tan theta + sec theta). " "...(i)`
` (m^(2) +1) = (sec theta + tan theta)^(2) +1 `
` = sec^(2) theta + tan^(2)theta + 2 sec theta tan theta +1 `
` = (1+ tan^(2) theta)+ sec^(2)theta + 2sec theta tan theta `
`= 2 sec^(2) theta + 2 sec theta tan theta " " [ because 1+ tan^(2)theta = sec^(2)theta ] `
`=2 sec theta (sec theta + tan theta ). " "...(ii) `
From (i) and (ii), we get
`((m^(2) -1))/((m^(2) +1)) = (tan theta)/(sec theta) = ((sin theta)/(cos theta ) xx cos theta) = sin theta . `
Hence, ` ((m^(2) -1))/((m^(2) +1)) = sin theta . `
58.

Write the value of ` "cosec"^(2)theta(1+costheta)(1-costheta).`

Answer» Correct Answer - 1
Given expression `"cosec"^(2)theta(1-cos^(2)theta)="cosec"^(2)thetasin^(2)theta=1.`
59.

Prove that `(i) sec^(2) theta + "cosec"^(2) theta = sec^(2) theta "cosec"^(2) theta ` `(ii) tan^(2) theta - sin^(2)theta = tan^(2)theta sin^(2)theta ` `(iii) tan^(2) theta + cot^(2)theta +2 = sec^(2) theta "cosec"^(2) theta `

Answer» We have
` (i) "LHS "= sec^(2)theta+ "cosec"^(2) theta `
`=(1)/(cos^(2)theta)+ (1)/(sin^(2)theta)=(sin^(2)theta+ cos^(2)theta)/(cos^(2)theta sin^(2)theta ) `
`= (1)/(cos^(2)theta sin^(2)theta) " "[ because sin^(2)theta + cos^(2) theta =1 ] `
` = sec^(2)theta "cosec"^(2)theta = "RHS. " `
`therefore "LHS " = " RHS." `
`(ii) " LHS " = tan^(2)theta- sin^(2)theta `
` =(sin^(2)theta)/(cos^(2)theta)- sin^(2)theta = (sin^(2)theta-sin^(2)theta cos^(2)theta )/(cos^(2)theta) `
` =(sin^(2)theta(1- cos^(2)theta))/(cos^(2)theta)= (sin^(2)theta)/(cos^(2)theta)* sin^(2)theta `
` = tan^(2)theta sin^(2)theta= "RHS." `
` therefore "LHS " = " RHS. "`
` (iii) "LHS "= tan^(2)theta+ cot^(2)theta +2 `
` = (1+tan^(2)theta)+(1+cot^(2)theta)=sec^(2)theta+ "cosec"^(2)theta `
` =(1)/(cos^(2)theta)+(1)/(sin^(2)theta)=(sin^(2)theta+ cos^(2)theta)/(cos^(2)theta sin^(2)theta )`
` =(1)/(cos^(2)theta sin^(2)theta)= sec^(2)theta "cosec"^(2)theta = "RHS. "`
` therefore "LHS " = " RHS. " `
60.

Write the value of `sin^(2)theta cos^(2)theta(1+tan^(2)theta)(1+cot^(2)theta).`

Answer» Correct Answer - 1
Given expression `=sin^(2)theta(1+cot^(2)theta)cos^(2)theta(1+tan^(2)theta)`
`=(sin^(2)theta "cosec"^(2)theta)(cos^(2)thetasec^(2)theta)=(1xx1)=1.`
61.

Write the value of ` 3 cot^(2)theta - 3 "cosec"^(2)theta.`

Answer» Correct Answer - -3
Given expression `=3cot^(2)theta-3(1+cot^(2)theta)=-3.`
62.

If `cosec theta - sin theta = a^3 and sec theta - cos theta = b^3` then prove that `a^2b^2(a^2+b^2) = 1.`

Answer» `a^(3)=((1)/(sin theta)-sin theta)=((1-sin^(2)theta)/(sintheta))=(cos^(2)theta)/(sintheta) rArr a=(cos^(2//3)theta)/(sin^(1//3)theta).`
`b^(3)=((1)/(cos theta)-cos theta)=((1-cos^(2)theta)/(costheta))=(sin^(2)theta)/(costheta) rArr b=(sin^(2//3)theta)/(cos^(1//3)theta).`
`therefore a^(2)b^(2)(a^(2)+b^(2))=a^(4)b^(2)+a^(2)b^(4)=a^(3)(ab^(2))+(a^(2)b)b^(3)`
`=(cos^(2)theta)/(sintheta)*[(cos^(2//3)theta)/(sin^(1//3)theta)*(sin^(4//3)theta)/(cos^(2//3)theta)]+[(cos^(4//3)theta)/(sin^(2//3)theta)*(sin^(2//3)theta)/(cos^(1//3)theta)]*(sin^(2)theta)/(costheta)`
`=(cos^(2)theta)/(sintheta)*sin theta+cos theta*(sin^(2)theta)/(cos theta)=(cos^(2)theta+sin^(2)theta)=1.`
63.

If `cot theta+ tan theta=m` and `sec theta-cos theta=n` then `(m^2 n)^(2/3)-(mn^2)^(2/3)=`

Answer» `m=((costheta)/(sintheta)+(sintheta)/(costheta))=((cos^(2)theta+sin^(2)theta)/(sinthetacostheta))=(1)/(sinthetacostheta)`
`n=((1)/(costheta)-costheta)=((1-cos^(2)theta)/(costheta))=(sin^(2)theta)/(costheta)`
`therefore m^(2)n=((1)/(sin^(2)theta cos^(2)theta)xx(sin^(2)theta)/(cos^(2)theta))=(1)/(cos^(3)theta)=sec^(3)theta`
`and mn^(2)=((1)/(sintheta costheta)xx(sin^(4)theta)/(cos^(2)theta))=(sin^(3)theta)/(cos^(3)theta)=tan^(3)theta.`
`therefore (m^(2)n)^(2//3)-(mn^(2))^(2//3)=(sec^(3)theta)^(2//3)-(tan^(3)theta)^(2//3)=(sec^(2)theta-tan^(2)theta)=1.`
64.

If `1+sin^2 theta= 3 sintheta cos theta,` then prove that `tan theta = 1` or `tan theta =1/2`

Answer» `1+sin^(2)theta=3sin thetacos theta rArr sec^(2)theta+tan^(2)theta=3 tan theta " "["dividing throughout by "cos^(2)theta]`
`rArr (1+tan^(2)theta)+tan^(2)theta=3tantheta`
`rArr 2tan^(2)theta-3tan theta+1=0`
`rArr 2tan^(2)theta-2tantheta-tantheta+1=0`
`rArr 2tantheta(tantheta-1)-(tan theta-1)=0`
`rArr (tantheta-1)(2tantheta-1)=0`
`rArr tan theta =1 or (1)/(2).`
65.

Show that none of the following is an identity: ` (i) cos^(2) theta + cos theta =1 " " (ii) sin^(2) theta + sin theta =2 " " (iii) tan^(2) theta + sin theta = cos^(2) theta `

Answer» `(i) cos^(2)30^(@)+cos 30^(@)=((sqrt(3))/(2))^(2)+(sqrt(3))/(2)=(3)/(4)+(sqrt(3))/(2)=(3+2sqrt(3))/(4) ne 1`.
(ii) `sin^(2)30^(@)+sin30^(@)=((1)/(2))^(2)+(1)/(2)=(1)/(4)+(1)/(2)=(3)/(4) ne 2.`
(iii) ` LHS=tan^(2)45^(@)+sin45^(@)=(1)^(2)+(1)/(sqrt(2))=1+(1)/(sqrt(2))=(sqrt(2)+1)/(sqrt(2))`.
`RHS=cos^(2)45^(@)=((1)/(sqrt(2)))^(2)=(1)/(2).`
`therefore LHS ne RHS.`
66.

Prove: `(tanA+tanB)/(cotA+cotB)=tanAtanB`

Answer» `LHS=(tanA+tanB)/((1)/(tanA)+(1)/(tanB))=(tanAtanB(tanA+tanB))/((tanA+tanB))=tanAtanB.`
67.

Prove that ` sqrt( sec^(2) theta + "cosec"^(2) theta )= tan theta + cot theta . `

Answer» We have
`LHS= sqrt( sec^(2) theta + "cosec"^(2) theta )`
` = sqrt((1+ tan^(2)theta)+(1+cot^(2)theta))= sqrt(tan^(2) theta + cot^(2)theta +2)`
`= sqrt(tan^(2)theta + cot^(2)theta+ 2 tan theta * cot theta) " "[ because tan theta * cot theta =1] `
`=sqrt((tan theta + cot theta)^(2)) = tan theta + cot theta = RHS. `
` therefore LHS = RHS. `
68.

Prove that `(i) (sin^(2)A cos^(2)B - cos^(2)A sin^(2) B )=(sin^(2)A- sin^(2)B) ` `(ii) (tan^(2)A sec^(2)B - sec^(2)A tan^(2)B)=(tan^(2)A- tan^(2)B) `

Answer» We have
`(i) LHS = (sin^(2)A cos^(2)B - cos^(2)A sin^(2) B )`
`= sin^(2)A(1- sin^(2)B)-(1- sin^(2)A)sin^(2)B `
` = sin^(2)A - sin^(2)B = RHS. `
`(ii) LHS = (tan^(2)A sec^(2)B - sec^(2)A tan^(2)B) `
` =tan^(2)A(1+tan^(2)B) - (1+ tan^(2)A)tan^(2)B `
` = (tan^(2)A - tan^(2)B) = RHS. `
69.

Prove the following identities:`tan^2A-tan^2B=(cos^2B-cos^2A)/(cos^2Bcos^2A)=(sin^2A-sin^2B)/(cos^2Acos^2B)``(sinA-sinB)/(cosA+cosB)+(cosA-cosB)/(sinA+sinB)=0`

Answer» We have
` (tan^(2)A - tan^(2)B) = (sin^(2)A)/(cos^(2)A) - (sin^(2)B)/(cos^(2)B) `
` = (sin^(2)A cos^(2)B - cos^(2)A sin^(2)B)/(cos^(2)A cos^(2)B) `
` = (sin^(2)A(1- sin^(2)B)-(1- sin^(2)A)sin^(2)B )/(cos^(2)A cos^(2)B) `
` = ((sin^(2)A - sin^(2)B))/(cos^(2)A cos^(2)B).`
Also, ` (tan^(2)A - tan^(2)B)= (sin^(2)A)/(cos^(2)A)- (sin^(2)B)/(cos^(2)B) `
` = (sin^(2)A cos^(2)B - cos^(2)A sin^(2)B)/(cos^(2)A cos^(2)B) `
` = ((1- cos^(2)A)cos^(2)B - cos^(2)A(1- cos^(2)B))/(cos^(2)B cos^(2)A) `
` = ((cos^(2)B - cos^(2)A))/(cos^(2)B cos^(2)A). `
Hence, `(tan^(2)A - tan^(2)B) = ((sin^(2)A - sin^(2)B))/(cos^(2)A cos^(2)B) = ((cos^(2)B - cos^(2)A))/(cos^(2)B cos^(2)A). `
70.

If `xsin^3theta+ycos^3theta-sinthetacosthetaa n dxsintheta=ycostheta,`prove that `x^2+y^2=1`

Answer» ` xsin^(3) theta + y cos^(3) theta = sin theta cos theta `
` rArr (xsin theta)sin^(2)theta + (ycos theta )cos^(2)theta = sin theta cos theta `
` rArr (xsin theta)sin^(2)theta + (xsin theta)cos^(2)theta = sin theta cos theta " " [because y cos theta = x sin theta ] `
`rArr (xsin theta ) (sin^(2) theta + cos^(2) theta ) = sin theta cos theta `
` rArr xsin theta = sin theta cos theta " " [ because sin^(2) theta + cos^(2) theta =1 ] `
` rArr x= cos theta . " "...(i) `
Now ,`xsin theta = y cos theta `
`rArr cos theta sin theta = y cos theta " "[because x= cos theta] `
` rArr y= sin theta. " "...(ii) `
On squaring (i) and (ii) and adding, we get ` x^(2) + y^(2) =1. `
Hence, ` x^(2) + y^(2) =1. `
71.

Choose the correct answer in each of the following questions: `sin^(2)30^(@)+4cot^(2)45^(@)-sec^(2)60^(@)=?`

Answer» Correct Answer - B
`sin^(2)30^(@)+4cot^(2)45^(@)-sec^(2)60^(@)=((1)/(2))^(2)+4xx(1)^(2)-2^(2)=(1)/(4)+4-4=(1)/(4).`