InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
Prove that:`tan6^0tan42^0tan66^0tan78^0=1.` |
|
Answer» `L.H.S. = tan6^@tan42^@tan66^@tan78^@` `=(sin6^@sin42^@sin66^@sin78^@)/(cos6^@cos42^@cos66^@cos78^@)` `=((2sin6^@sin66^@)(2sin42^@sin78^@))/((2cos6^@cos66^@)(2cos42^@cos78^@))` `=((cos60^@-cos72^@)(cos36^@-cos120^@))/((cos60^@+cos72^@)(cos36^@+cos120^@))` `=((1/2-sin18^@)(cos36^@+1/2))/((1/2+sin18^@)(cos36^@-1/2))...[As costheta = sin(90-theta)]` `=((1-2sin18^@)(2cos36^@+1))/((1+2sin18^@)(2cos36^@-1))` Now, putting, `sin18^@ = (sqrt5-1)/4 and cos36^@ = (sqrt5+1)/4` `=((1-2((sqrt5-1)/4))((2(sqrt5+1)/4)+1))/((1+2((sqrt5+1)/4))(2((sqrt5-1)/4)-1))` `=((3-sqrt5)(sqrt5+3))/((1+sqrt5)(sqrt5-1))` `=(9-5)/(5-1)` `=4/4 =1 = R.H.S.` |
|
| 2. |
Prove that:`cos^4pi/8+cos^4(3pi)/8+cos^4(5pi)/8+cos^4(7pi)/8=3/2` |
|
Answer» `L.H.S. = cos^4((pi)/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)` `=cos^4((pi)/8)+cos^4((3pi)/8)+cos^4(pi-(3pi)/8)+cos^4(pi-(pi)/8)` `=cos^4((pi)/8)+cos^4((3pi)/8)+cos^4((3pi)/8)+cos^4((pi)/8)...[As cos(pi-theta) = costheta]` `=2(cos^4((pi)/8)+cos^4((3pi)/8))` `=2(cos^4((pi)/8)+sin^4(pi/2-(3pi)/8))` `=2(cos^4((pi)/8)+sin^4((pi)/8))` `=2((cos^2(pi/8)+sin^2(pi/8))^2 - 2sin^2(pi/8)cos^2(pi/8))` `=2(1-(2sin(pi/8)cos(pi/8))^2/2)` `=2(1-(sin(2*pi/8))^2/2)` `=2-sin^2(pi/4)` `=2-(1/sqrt2)^2` `=2-1/2` `=3/2 = R.H.S.` |
|
| 3. |
Prove that: `(1+cospi/8)(1+cos(3pi)/8)(1+cos(5pi)/8)(1+cos(7pi)/8)=1/8` |
|
Answer» `L.H.S. =(1+cos(pi/8)) (1+cos((3pi)/8))(1+cos((5pi)/8)) (1+cos((7pi)/8)) ` `=(1+cos(pi/8)) (1+cos((3pi)/8))(1+cos(pi-(3pi)/8)) (1+cos(pi -(pi)/8)) ` `=(1+cos(pi/8)) (1+cos((3pi)/8))(1-cos((3pi)/8)) (1-cos((pi)/8)) ` `=(1-cos^2(pi/8)) (1-cos^2((3pi)/8)) ` `=sin^2(pi/8)sin^2((3pi)/8)` `=sin^2(pi/8)cos^2(pi/2-(3pi)/8)` `=sin^2(pi/8)cos^2(pi/8)` `=1/4(2sin(pi/8)cos(pi/8))^2` `=1/4(sin(2*pi/8))^2` `=1/4(sin(pi/4))^2` `=1/4(1/sqrt2)^2` `=1/8 = R.H.S.` |
|
| 4. |
Prove that:`"cot"pi/(24)=sqrt(2)+sqrt(3)+sqrt(4)+sqrt(6)` |
|
Answer» `cot (pi/24) = cos (pi/24)/sin(pi/24)` `=cos (pi/24)/sin(pi/24)**(2cos(pi/24))/(2cos(pi/24))` `=(2cos^2 (pi/24))/(2sin(pi/24)cos(pi/24))` `=(1+cos(pi/12))/(sin(pi/12))` `=(1+cos(pi/4-pi/6))/(sin(pi/4-pi/6))` `=(1+cos(pi/4)cos(pi/6)+sin(pi/4)sin(pi/6))/(sin(pi/4)cos(pi/6)-cos(pi/4)sin(pi/6))` `=(1+(1/sqrt2)(sqrt3/2)+(1/sqrt2)(1/2))/((1/sqrt2)(sqrt3/2)-(1/sqrt2)(1/2))` `=(2sqrt2+sqrt3+1)/(sqrt3-1)` `=(2sqrt2+sqrt3+1)/(sqrt3-1)**(sqrt3+1)/(sqrt3+1)` `=(2sqrt6+3+sqrt3+2sqrt2+sqrt3+1)/(3-1)` `=sqrt6+sqrt2+sqrt3+2` `=sqrt2+sqrt3+sqrt4+sqrt6 = R.H.S.` |
|
| 5. |
Prove that `(tan3x)/(tanx)`never lies between `1/3a n d3`. |
|
Answer» `(tan3x)/tanx = (3tan - tan^3x)/(tanx(1-3tan^2x))` `=(3-tan^2x)/(1-3tan^2x)` Now, let `(3-tan^2x)/(1-3tan^2x) = a` `=>3-tan^2x = a-3atan^2x` `=>tan^2x(3a-1) = a-3` `=>tan^2x = (a-3)/(3a-1)` It means, `(a-3)/(3a-1) gt 0.`So, `a-3 gt 0 and 3a-1 lt 0` `=> a gt 3 and a lt 1/3` So, `(tan3x)/tanx` never lies between `1/3` and `3.` |
|
| 6. |
Prove that:`sin(pi/10) sin((13pi)/10)=-1/4` |
|
Answer» Here, we will use, `sin 18^@ = (sqrt5-1)/4 and cos 36^@ = (sqrt5+1)/4` Now, `L.H.S. = sin(pi/10)sin((13pi)/10)` `=sin18^@sin(pi+(3pi)/10)` `=sin18^@(-sin((3pi)/10))` `=-sin18^@sin54^@` `=-sin18^@sin(90^@-36^@)` `=-sin18^@cos36^@` `=-((sqrt5-1)/4)( (sqrt5+1)/4) ` `=-((5-1)/16)` `=-4/16` `=-1/4 = R.H.S.` |
|
| 7. |
Prove that `cos^3A+cos^3(120^0+A)+cos^3(240^0+A)=3/4cos3A` |
|
Answer» `cosA + cos(120^@+A) +cos(240^@+A)` `= cosA + (2cos((120+A+240+A)/2)cos((120+A-240-A)/2))` `= cosA + (2cos(180+A)cos(-60^@))` `= cosA + (2cos(180+A)cos60^@)` `= cosA + (-2cosA(1/2))` `=cosA - cosA = 0` We know, when, `a+b+c = 0`, `a^3+b^3+c^3 = 3abc` `:. L.H.S. = cos^3A + cos^3(120^@+A) +cos^3(240^@+A) = 3cosAcos(120^@+A)cos(240^@+A)` `=3cosAcos(180-(60-A))cos(180+(60+A))` `=3cosAcos(-(60-A))cos(-(60+A))` `=3cosAcos(60-A)cos(60+A)` Using `cos(C-D)cos(C+D) = cos^2C - sin^2D` `=3cosA[cos^2 60^@-sin^2A]` `=3cosA[1/4-(1-cos^2A)]` `=3cosA[-3/4+cos^2A]` `=3/4(4cos^3A - 3cosA)` `=3/4cos3A = R.H.S.` |
|
| 8. |
If `acos2theta+bsin2theta=ch a salphaa n dbeta`as its roots , then prove that`tanalpha+t a nbeta=(2a b)/(a+c)``tanalpha+t a nbeta=(c-a)/(c+a)``tan(alpha+beta)=b/a` |
|
Answer» Here, `acos2theta+bsin2theta = c` `=>a((1-tan^2theta)/(1+tan^2theta)) +b((2tantheta)/(1+tan^2theta)) = c` `=>a(1-tan^2theta)+2btantheta = c(1+tan^2theta)` `=>(c+a)tan^2theta-2btantheta+(c-a) = 0->(1)` Now, given equation has roots `alpha` and `beta`. So, equation (1), will have roots `tan alpha` and `tan beta`. `:.` Sum of the roots `= (-(-2b))/(c+a)` `:. tanalpha+tanbeta = (2b)/(a+c)` |
|
| 9. |
Prove that: `|sintheta"sin"(60-theta)sin(60+theta)|lt=1/4`for all values of `theta`. |
|
Answer» `|sinthetasin(60-theta)sin(60+theta)|` `=1/2|sintheta(2sin(60-theta)sin(60+theta))|` Using, `cosC-cosD = -2sin((C+D)/2)((C-D)/2),` `=1/2|sintheta(cos2theta - cos120^@)|` `=1/2|sinthetacos2theta - sintheta(-sin30^@)|` `=1/2|sinthetacos2theta +1/2sintheta|` `=1/4|2sinthetacos2theta +sintheta|` Using `sinC-sinD = 2cos((C+D)/2)sin((C-D)/2)` `= 1/4|sin3theta - sintheta+sintheta|` `=1/4|sin3theta|` Now, we know, `-1 le sin3theta le 1` `=>|sin3theta| le 1` `=>1/4|sin3theta| le 1/4` `:. |sinthetasin(60-theta)sin(60+theta)| le 1/4.` |
|
| 10. |
If `theta=pi/(2^n+1)`, prove that: `2^ncosthetacos2thetacos2^2 cos2^(n-1)theta=1.` |
|
Answer» `L.H.S. = 2^ncosthetacos2theta...cos2^(n-1)theta` `=2costheta*2cos2theta*2cos2^2theta...2cos2^(n-1)theta` `=1/sintheta[2sinthetacostheta*2cos2theta*2cos2^2theta...2cos2^(n-1)theta]` `=1/sintheta[sin2theta*2cos2theta*2cos2^2theta...2cos2^(n-1)theta]` `=1/sintheta[sin2^2theta*2cos2^2theta...2cos2^(n-1)theta]` If we solve it in this way, we finally come to the below solution, `=1/sintheta[2sin2^(n-1)thetacos2^(n-1)theta]` `=sin2^ntheta/sintheta` `=sin(pi-2^ntheta)/sintheta`...As `sin(pi-theta) = sintheta` `=sin(pi-2^n(pi/(2^n+1)))/sintheta` `=sin((2^npi+pi-2^npi)/(2^n+1))/sintheta` `=sin((pi)/(2^n+1))/sintheta` `=sintheta/sintheta` `=1 = R.H.S.` |
|
| 11. |
Prove that: `cos5A=16cos^5A-20cos^3A+5cosA` |
|
Answer» `cos5A = cos(3A+2A) = cos3Acos2A - sin3Asin2A` `=(4cos^3A-3cosA)(2cos^2A -1) - (3sinA - 4sin^3A)(2sinAcosA)` `=(8cos^5A-10cos^3A+3cosA)- (3-4sin^2A)(2sin^2AcosA)` `=(8cos^5A-10cos^3A+3cosA)- (3-4(1-cos^2A))(2(1-cos^2A)cosA)` `=(8cos^5A-10cos^3A+3cosA)- (3-4+4cos^2A)(2cosA - 2cos^3A)` `=(8cos^5A-10cos^3A+3cosA)- (-8cos^5A+10cos^3A- 2cosA)` `=16cos^5A-20cos^3A+5cosA= R.H.S.` |
|
| 12. |
If `tanalpha=1/7,sinbeta=1/(sqrt(10)),`prove that`alpha+2beta=pi/4`, where `0 |
|
Answer» `sin beta = 1/sqrt10` `:. cos beta = sqrt(1-(1/sqrt10)^2) = 3/sqrt10` `:. tanbeta = sinbeta/cosbeta = 1/3` Now, `tan2beta = (2tanbeta)/(1-tan^2beta) = (2/3)/(1-1/9) = 6/8 = 3/4` Now, `tan(alpha+2beta) = (tanalpha+tan2beta)/(1-tanalphatan2beta)` `=(1/7+3/4)/(1-1/7(3/4)) = (25/28)/(25/28) = 1` `:. tan(alpha+2beta) = tan (pi/4)` `:. alpha+2beta = pi/4.` |
|
| 13. |
`sin5A=5cos^4AsinA-10cos^2Asin^3A+sin^5A` |
|
Answer» `L.H.S. = sin5A = sin(3A+2A) = sin3Acos2A+sin2Acos3A` `=(3sinA-4sin^3A)(1-2sin^2A)+(4cos^3A-3cosA)(2sinAcosA)` `=3sinA-6sin^3A-4sin^3A+8sin^5A+8cos^4AsinA - 6sinAcos^2A` `=sin^5A+5cos^4AsinA-10cos^2Asin^3A = R.H.S.` |
|
| 14. |
Prove that:`(2cos2^ntheta+1)/(2costheta+1)=(2costheta-1)(2cos2theta-1)(2cos2^2theta-1)(2cos2^(n-1)theta-1)` |
|
Answer» `R.H.S. = (2costheta-1)(2cos2theta-1)...(2cos2^(n-1)theta - 1)` `=1/(2costheta+1)[(2costheta+1)(2costheta-1)(2cos2theta-1)...(2cos2^(n-1)theta - 1)]` `=1/(2costheta+1)[(4cos^2theta-1)(2cos2theta-1)...(2cos2^(n-1)theta - 1)]` `=1/(2costheta+1)[(2(2cos^2theta)-1)(2cos2theta-1)...(2cos2^(n-1)theta - 1)]` `=1/(2costheta+1)[(2(1+cos2theta)-1)(2cos2theta-1)...(2cos2^(n-1)theta - 1)]` `=1/(2costheta+1)[(2cos2theta+1)(2cos2theta-1)...(2cos2^(n-1)theta - 1)]` `=1/(2costheta+1)[(4cos^ 2theta -1)...(2cos2^(n-1)theta - 1)]` `=1/(2costheta+1)[(2cos4theta+1)(2cos4theta-1)...(2cos2^(n-1)theta - 1)]` Similarly, if we solve this, it will become, `=1/(2costheta+1)[(2cos2^(n-1)theta + 1)(2cos2^(n-1)theta - 1)]` `=1/(2costheta+1)[4cos^2 2^(n-1)theta-1]` `=1/(2costheta+1)[2(cos2^n theta+1)-1]` `=(2cos2^n theta+1)/(2costheta+1) = R.H.S.` |
|
| 15. |
The value of `(sin5alpha-sin3alpha)/(cos5alpha+2cos4alpha+cos3alpha)` is |
|
Answer» Here, we will use, `sinC - sinD = 2sin((C-D)/2) sin((C+D)/2)` `cosC + cosD = 2cos((C+D)/2)cos((C-D)/2)` `L.H.S. = (sin5alpha-sin3alpha)/(cos5alpha+2cos4alpha+cos3alpha)` `=(2sinalphacos4alpha)/(2cos4alphacosalpha+2cos4alpha)` `=sinalpha/(1+cos alpha)` `=(2sin(alpha/2)cos(alpha/2))/(2cos^2(alpha/2))` `=tan(alpha/2)` `:. (sin5alpha-sin3alpha)/(cos5alpha+2cos4alpha+cos3alpha) = tan(alpha/2)` |
|