InterviewSolution
Saved Bookmarks
| 1. |
1 - {1 + (a2 - 1)-1}-1 = ?1). \(\frac{1}{{{a^2}}}\)2). a23). \(- \frac{1}{{{a^2}}}\)4). –a2 |
|
Answer» Solve the given question, using FOLLOWING laws of indices, Laws of Indices, 1-: am × an = a{m + n} 2-: am ÷ an = a{m - n} 3-: [(am)n] = amn 4-: (a)1/m = $(\SQRT[m]{a})$ 5-: (a)-m = 1/am 6-: (a)(m/n) = $(\sqrt[n]{{{a^m}}})$ 7-: a0 = 1 ⇒ 1 - {1 + (a2 -1)-1}-1 $(\begin{array}{l} \Rightarrow 1 - {\left\{ {1 + \frac{1}{{{a^{2\;}} - 1}}} \right\}^{ - 1}}\\ \Rightarrow 1 - {\left\{ {\frac{{{a^2}}}{{{a^2} - 1}}} \right\}^{ - 1}}\\ \Rightarrow 1 - \left\{ {\frac{{{a^2}}}{{{a^2} - 1}}} \right\}^{ - 1}\\ \Rightarrow \frac{1}{{{a^2}}} \END{array})$ |
|