InterviewSolution
| 1. |
1). \(14\frac{{14}}{{19}}\)2). \(13\frac{{19}}{{21}}\)3). \(13\frac{{18}}{{19}}\)4). \(17\frac{8}{{11}}\) |
|
Answer» BODMAS rule to solve this question, as per the order given below, Step- 1- Parts of an equation enclosed in 'Brackets' must be solved first, Step- 2- Any mathematical 'Of' or 'Exponent' must be solved NEXT, Step- 3- Next, the parts of the equation that contain 'Division' and 'Multiplication' are calculated, Step- 4- Last but not least, the parts of the equation that contain 'Addition' and 'Subtraction' should be calculated. Given expression is, $(4\FRAC{1}{3} \times 5\frac{1}{3} \div 6\frac{1}{3} \div \frac{1}{3} + 5\frac{1}{3} - 2\frac{1}{3} = ?)$ $(\Rightarrow \;\frac{{13}}{3}\; \times \frac{{16}}{3}\; \div \frac{{19}}{3}\; \div \frac{1}{3} + \frac{{16}}{3} - \frac{7}{3} = \;?)$ $(\Rightarrow \left( {\frac{{13}}{3}\; \times \frac{{16}}{3} \times \frac{3}{{19}} \times 3} \RIGHT) + \frac{{16}}{3} - \frac{7}{3} = \;?)$ $(\Rightarrow \;\frac{{208}}{{\;19}} + \frac{{16}}{3} - \frac{7}{3} = \;?)$ $(\Rightarrow \frac{{624}}{{57}} + \frac{{304}}{{57}} - \frac{{133}}{{57}} = \;?)$ ⇒ (795/57) = ? ⇒ ? = 265/19 $(\therefore \;?\; = \;13\frac{{18}}{{19}})$ |
|