InterviewSolution
| 1. |
1). 3 : 52). 1 : 33). 2 : 34). 4 : 3 |
|
Answer» FIRST of all, we use given quantities and place them in the formula, to know the required quantities. Cost of 1 kg fruit of 1st quality = Cost price of dearer = d = Rs. 90 Cost of 1 kg fruit of 2nd quality = Cost price of cheaper = C = Rs. 65 Desired cost of 1 kg of the mixture = Mean price = m = Rs. 75 $(\begin{ARRAY}{l} {\rm{Required\;rate}} = \frac{{{\rm{Quantity\;of\;Cheaper}}}}{{{\rm{Quantity\;of\;Dearer}}}} = \frac{{{\rm{d}} - {\rm{m}}}}{{{\rm{m}} - {\rm{c}}}}\\ \Rightarrow \frac{{{\rm{Quantity\;of\;Cheaper}}}}{{{\rm{Quantity\;of\;Dearer}}}} = \frac{{90 - 75}}{{75 - 65}} = \frac{{15}}{{10}} = \frac{3}{2} \end{array})$ ∴ The fruit seller should mix the mixture in the ratio 2 : 3 |
|