1.

1). 5 litres2). 2 litres3). 3 litres4). 4 litres

Answer»

First of all, we use GIVEN quantities and place them in the formula, to know the required quantities.

Cost of $(2\frac{1}{3}{\rm{\;or}}\frac{7}{3})$ LITRES MILK = Rs. 42

⇒ Cost of 1 litre milk = Rs. $(\frac{{42 \times 3}}{7})$ = Rs. 18

Cost of dearer = d = Rs. 18

Cost of 1 litre water = Cost price of cheaper = c = Rs. 0

Desired cost of 1 litre of mixture = Mean price = m = $({\rm{Rs}}.{\rm{\;}}17\frac{1}{3} = Rs.\frac{{52}}{3})$

Quantity of cheaper = d – m $(= 18 - \frac{{52}}{3} = \frac{{54 - 52}}{3} = \frac{2}{3})$

Quantity of dearer = m – c $(= \frac{{52}}{3} - 0 = \frac{{52}}{3})$

Required rate $(= \frac{{Quantity\;of\;Cheaper}}{{Quantity\;of\;Dearer}} = \frac{{d - m}}{{m - c}} = \frac{{2 \times 3}}{{3 \times 52}} = \frac{1}{{26}})$

∴ Quantity of water to be added $(= \frac{1}{{26}} \times 52\;litres = 2\;litres)$



Discussion

No Comment Found

Related InterviewSolutions