InterviewSolution
Saved Bookmarks
| 1. |
1). 3152). 3783). 3724). Cannot be determined |
|
Answer» Let the first number be = 3X Let the second number be = 6x Let the third number be = 2X Average of the three NUMBERS is given to be 105 + 2x $(Average\; = \;\frac{{Sum\;of\;all\;observations}}{{Number\;of\;observations}})$ $(\BEGIN{array}{l} \Rightarrow 105 + 2x = \frac{{3x + 6x + 2x}}{3}\\ \Rightarrow 105 + 2x = \frac{{11x}}{3}\\ \Rightarrow 105 = \frac{{11x}}{3} - 2x\\ \Rightarrow 105 = \frac{{11x - 6x}}{3}\\ \Rightarrow 105 = \frac{{5x}}{3}\\ \Rightarrow x = \frac{{105\; \times \;3}}{5}\\ \Rightarrow x = 21 \times 3 \end{array})$ ⇒ x = 63 ⇒ 6x = 6 × 63 = 378 |
|