1.

1). 3152). 3783). 3724). Cannot be determined

Answer»

Let the first number be = 3X

Let the second number be = 6x

Let the third number be = 2X

Average of the three NUMBERS is given to be 105 + 2x

$(Average\; = \;\frac{{Sum\;of\;all\;observations}}{{Number\;of\;observations}})$

$(\BEGIN{array}{l} \Rightarrow 105 + 2x = \frac{{3x + 6x + 2x}}{3}\\ \Rightarrow 105 + 2x = \frac{{11x}}{3}\\ \Rightarrow 105 = \frac{{11x}}{3} - 2x\\ \Rightarrow 105 = \frac{{11x - 6x}}{3}\\ \Rightarrow 105 = \frac{{5x}}{3}\\ \Rightarrow x = \frac{{105\; \times \;3}}{5}\\ \Rightarrow x = 21 \times 3 \end{array})$

x = 63

6x = 6 × 63 = 378



Discussion

No Comment Found