InterviewSolution
Saved Bookmarks
| 1. |
1). 56.862). 51.263). 48.754). 33.75 |
|
Answer» Given, ⇒ Average = Sum of terms/Number of terms For Arithmetic Progression, If Sum of terms = Sn and first term of progression = a, COMMON DIFFERENCE = d and n = number of terms- $(\Rightarrow {S_n} = \frac{n}{2}\left( {2a + (n - 1} \right)d))$ For given SERIES - a = 10, d = 2.5 and n = 20 $(\Rightarrow {S_{20}} = \frac{{20}}{2}\left\{ {2 \times 10 + \left( {20 - 1} \right) \times 2.5} \right\})$ ⇒ S20 = 10{20 + 19 × 2.5} ⇒ S20 = 10(20 + 47.5) ⇒ S20 = 10 × 67.5 ⇒ S20 = 675 Average of first 20 terms of Arithmetic Progression = 675/20 = 33.75 ∴ Average of first 20 terms of Arithmetic Progression = 33.75 |
|