1.

`(1)/("log"_(2)n) + (1)/("log"_(3)n) + (1)/("log"_(4)n) + … + (1)/("log"_(43)n)=`A. 1B. `"log"_(43!)n`C. `"log"_(n)43!`D. none of these

Answer» Correct Answer - C
We have,
`(1)/("log"_(2)n) + (1)/("log"_(3)n) + (1)/("log"_(4)n) + … + (1)/("log"_(43)n)`
` = "log"_(n)2 + "log"_(n)3 + "log"_(n)4 +… +"log"_(n)43`
` = "log"_(n) (2 xx 3 xx 4 xx .. xx 43) = "log"_(n)43!`


Discussion

No Comment Found