InterviewSolution
| 1. |
1). \(\sqrt {\frac{3}{\pi }}\)2). \(\sqrt 3\)3). \(\sqrt {\frac{\pi }{6}}\)4). \(\sqrt {\frac{6}{\pi }}\) |
|
Answer» As we know, SURFACE area of SPHERE = 4π r2, where r is the radius of sphere Surface area of cube = 6a2, where a is side of cube ∴ Surface area of sphere = surface area of cube ⇒ 4πr2 = 6a2 $(\begin{array}{l} \Rightarrow \;\frac{{{r^2}}}{{{a^2}}} = \frac{6}{{4\pi }}\\ \Rightarrow \frac{r}{a} = \SQRT {\frac{3}{{2\pi }}}\end{array})$ Now, As we know, VOLUME of sphere = 4π r3/3, where r is the radius of sphere Volume of cube = a3, where a is side of cube ∴ (volume of sphere)/(Volume of cube) $(= \;\frac{{\frac{4}{3}\pi {r^3}}}{{{a^3}}})$ $(= \frac{{4\pi }}{3} \times {\left( {\frac{r}{a}} \right)^3} = \;\frac{{4\pi }}{3} \times {\left( {\sqrt {\frac{3}{{2\pi }}} } \right)^3} = \frac{{4\pi }}{3} \times \frac{3}{{2\pi }} \times \sqrt {\frac{3}{{2\pi }}}= \;\sqrt {\frac{6}{\pi }} )$ |
|