1.

1). \(\sqrt {\frac{3}{\pi }}\)2). \(\sqrt 3\)3). \(\sqrt {\frac{\pi }{6}}\)4). \(\sqrt {\frac{6}{\pi }}\)

Answer»

As we know,

SURFACE area of SPHERE = 4π r2, where r is the radius of sphere

Surface area of cube = 6a2, where a is side of cube

∴ Surface area of sphere = surface area of cube

⇒ 4πr2 = 6a2

$(\begin{array}{l} \Rightarrow \;\frac{{{r^2}}}{{{a^2}}} = \frac{6}{{4\pi }}\\ \Rightarrow \frac{r}{a} = \SQRT {\frac{3}{{2\pi }}}\end{array})$

Now,

As we know,

VOLUME of sphere = 4π r3/3, where r is the radius of sphere

Volume of cube = a3, where a is side of cube

∴ (volume of sphere)/(Volume of cube) $(= \;\frac{{\frac{4}{3}\pi {r^3}}}{{{a^3}}})$

$(= \frac{{4\pi }}{3} \times {\left( {\frac{r}{a}} \right)^3} = \;\frac{{4\pi }}{3} \times {\left( {\sqrt {\frac{3}{{2\pi }}} } \right)^3} = \frac{{4\pi }}{3} \times \frac{3}{{2\pi }} \times \sqrt {\frac{3}{{2\pi }}}= \;\sqrt {\frac{6}{\pi }} )$



Discussion

No Comment Found

Related InterviewSolutions