InterviewSolution
| 1. |
3sin2 x – 5 sin x cos x + 8 cos2 x = 2 |
|
Answer» Ideas required to solve the problem: The general solution of any trigonometric equation is given as – • sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z. • cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. • tan x = tan y, implies x = nπ + y, where n ∈ Z. Given, 3sin2 x – 5 sin x cos x + 8 cos2 x = 2 ⇒ 3sin2 x + 3 cos2 x – 5sin x cos x + 5 cos2 x = 2 ⇒ 3 - 5sin x cos x + 5 cos2 x = 2 {∵ sin2 x + cos2x = 1} ⇒ 5cos2 x + 1 = 5sin x cos x Squaring both sides: ⇒ (5cos2 x + 1)2 = (5sin x cos x)2 ⇒ 25cos4 x + 10cos2 x + 1 = 25 sin2 x cos2 x ⇒ 25cos4 x + 10cos2 x + 1 = 25 (1 - cos2 x) cos2 x ⇒ 50cos4 x – 15 cos2 x + 1 = 0 ⇒ 50cos4 x – 10 cos2 x – 5cos2 x + 1 = 0 ⇒ 10cos2 x ( 5cos2 x – 1) – (5cos2 x – 1) = 0 ⇒ (10cos2 x - 1)(5cos2 x – 1) = 0 ∴ cos2 x = 1/10 or cos2 x = 1/5 Hence, when cos2 x = 1/10 We have, cos x = ± \(\frac{1}{\sqrt{10}}\) If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. let cos α = 1/√10 ∴ cos (π – α) = -1/√10 ∴ x = 2nπ ± α or x = 2nπ ± (π – α) ∴ when, cos x = ± \(\frac{1}{\sqrt{10}}\) x = 2nπ ± α or x = 2nπ ± (π – α) where n ∈ Z. and cos α = \(\frac{1}{\sqrt{10}}\) When cos2 x = 1/5 We have, cos x = ± \(\frac{1}{\sqrt{5}}\). If cos x = cos y, implies x = 2mπ ± y, where n ∈ Z. let cos β = 1/√5 ∴ cos (π – β) = -1/√5 ∴ x = 2mπ ± β or x = 2mπ ± (π – β) ∴ when, cos x = ± \(\frac{1}{\sqrt{5}}\). x = 2mπ ± β or x = 2mπ ± (π – β) where n ∈ Z. and cos β = \(\frac{1}{\sqrt{5}}\)...ans |
|