InterviewSolution
| 1. |
Solve the following equations : sin x + sin 2x + sin 3x = 0 |
|
Answer» Ideas required to solve the problem: The general solution of any trigonometric equation is given as – • sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z. • cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. • tan x = tan y, implies x = nπ + y, where n ∈ Z. Given, sin x + sin 2x + sin 3x = 0 To solve the equation we need to change its form so that we can equate the t-ratios individually. For this we will be applying transformation formulae. While applying the Transformation formula we need to select the terms wisely which we want to transform. As, sin x + sin 2x + sin 3x = 0 ∴ we will use sin x and sin 3x for transformation as after transformation it will give sin 2x term which can be taken common. {∵ sin A + sin B = 2 sin \((\frac{A+B}2)\) cos \((\frac{A-B}2)\) ⇒ sin 2x + 2 sin \((\frac{3x+x}2)\) cos \((\frac{3x-x}2)\) = 0 ⇒ 2sin 2x cos x + sin 2x = 0 ⇒ sin 2x ( 2cos x + 1) = 0 ∴ either, sin 2x = 0 or 2cos x + 1 = 0 ⇒ sin 2x = sin 0 or cos x = - 1/2 = cos (π-\(\frac{π}3\)) = cos \(\frac{2π}3\) If sin x = sin y, implies x = nπ + (– 1)ny, where n ∈ Z. If cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. Comparing obtained equation with standard equation, we have: 2x = nπ or x = 2mπ ± \(\frac{2π}3\) ∴ x = \(\frac{nπ}2\) or x = 2mπ ± \(\frac{2π}3\)where m,n ϵ Z ..ans |
|