InterviewSolution
| 1. |
Solve the following equations:(i) tan x + tan 2x + tan 3x = 0(ii) tan x + tan 2x = tan 3x(iii) tan 3x + tan x = 2 tan 2x |
|
Answer» Since, the general solution of any trigonometric equation is given as sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z. cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. tan x = tan y, implies x = nπ + y, where n ∈ Z. (i) tan x + tan 2x + tan 3x = 0 Now let us simplify, tan x + tan 2x + tan 3x = 0 tan x + tan 2x + tan (x + 2x) = 0 On using the formula, tan (A + B) = [tan A + tan B]/[1 – tan A tan B] Therefore, tan x + tan 2x + [[tan x + tan 2x]/[1- tan x tan 2x]] = 0 (tan x + tan 2x) (1 + 1/(1- tan x tan 2x)) = 0 (tan x + tan 2x) ([2 – tan x tan 2x]/[1 – tan x tan 2x]) = 0 Now, (tan x + tan 2x) = 0 or ([2 – tan x tan 2x]/[1 – tan x tan 2x]) = 0 (tan x + tan 2x) = 0 or [2 – tan x tan 2x] = 0 tan x = tan (-2x) or tan x tan 2x = 2 x = nπ + (-2x) or tax x [2tan x/(1 – tan2 x)] = 2 [Using, tan 2x = 2 tan x/1 - tan2 x] 3x = nπ or 2 tan2 x/(1 - tan2 x) = 2 3x = nπ or 2 tan2 x = 2(1 – tan2 x) 3x = nπ or 2 tan2 x = 2 – 2tan2 x 3x = nπ or 4 tan2 x = 2 x = nπ/3 or tan2 x = 2/4 x = nπ/3 or tan2 x = 1/2 x = nπ/3 or tan x = 1/√2 x = nπ/3 or x = tan α [let 1/√2 be ‘α’] x = nπ/3 or x = mπ + α ∴ the general solution is Thus, x = nπ/3 or mπ + α, where α = tan-11/√2, m, n ∈ Z. (ii) tan x + tan 2x = tan 3x Now let us simplify, tan x + tan 2x = tan 3x tan x + tan 2x – tan 3x = 0 tan x + tan 2x – tan (x + 2x) = 0 On using the formula, tan (A+B) = [tan A + tan B] / [1 – tan A tan B] Therefore, tan x + tan 2x – [[tan x + tan 2x]/[1- tan x tan 2x]] = 0 (tan x + tan 2x) (1 – 1/(1- tan x tan 2x)) = 0 (tan x + tan 2x) ([– tan x tan 2x] / [1 – tan x tan 2x]) = 0 Now, (tan x + tan 2x) = 0 or ([– tan x tan 2x] / [1 – tan x tan 2x]) = 0 (tan x + tan 2x) = 0 or [– tan x tan 2x] = 0 tan x = tan (-2x) or -tan x tan 2x = 0 tan x = tan (-2x) or 2tan2 x / (1 – tan2 x) = 0 [Using, tan 2x = 2 tan x / 1-tan2 x] x = nπ + (-2x) or x = mπ + 0 3x = nπ or x = mπ x = nπ/3 or x = mπ ∴ the general solution is x = nπ/3 or mπ, where m, n ∈ Z. (iii) tan 3x + tan x = 2 tan 2x Now let us simplify, tan 3x + tan x = 2 tan 2x tan 3x + tan x = tan 2x + tan 2x Then, upon rearranging we get, tan 3x – tan 2x = tan 2x – tan x On using the formula, tan (A - B) = [tan A – tan B]/[1 + tan A tan B] Therefore, [(tan 3x – tan 2x) (1 + tan 3x tan 2x)]/[1 + tan 3x tan 2x] = [(tan 2x - tan x) (1 + tan x tan 2x)]/[1 + tan 2x tan x] tan (3x – 2x) (1 + tan 3x tan 2x) = tan (2x – x) (1 + tan x tan 2x) tan x [1 + tan 3x tan 2x – 1 – tan 2x tan x] = 0 tan x tan 2x (tan 3x – tan x) = 0 Therefore, tan x = 0 or tan 2x = 0 or (tan 3x – tan x) = 0 tan x = 0 or tan 2x = 0 or tan 3x = tan x x = nπ or 2x = mπ or 3x = kπ + x x = nπ or x = mπ/2 or 2x = kπ x = nπ or x = mπ/2 or x = kπ/2 ∴ the general solution is Thus, x = nπ or mπ/2 or kπ/2, where, m, n, k ∈ Z. |
|