InterviewSolution
Saved Bookmarks
| 1. |
`9x^(7).tanx.a^(x)` का x के सापेक्ष अवलंकन गुणांक ज्ञात कीजिएः |
|
Answer» माना `y=9x^(7).tan x.a^(x)` `therefore (dy)/(dx)=9(d)/(dx)[(x^(7)tan x)a^(x)]` `=9[(x^(7)tan x)(d)/(dx)a^(x)+a^(x)(d)/(dx)(x^(7)tan x)]` `=9[(x^(7)tan x)a^(x)log_(e)a+a^(x){x^(7) (d)/(dx)tan x+tan x (d)/(dx)x^(7)}]` `=9[(x^(7)tan x)a^(x)log_(e)a+a^(x){x^(7)sec^(2)x+7x^(6)tan x}]` `=9a^(x)[x^7tan x log _(e) a+x^(7)sec^2x+7x^(6)tan x]` `=9a^(x)x^(6)[x (tan xlog_(e)a+sec^(2)x)+7tan x]` |
|