1.

`9x^(7).tanx.a^(x)` का x के सापेक्ष अवलंकन गुणांक ज्ञात कीजिएः

Answer» माना `y=9x^(7).tan x.a^(x)`
`therefore (dy)/(dx)=9(d)/(dx)[(x^(7)tan x)a^(x)]`
`=9[(x^(7)tan x)(d)/(dx)a^(x)+a^(x)(d)/(dx)(x^(7)tan x)]`
`=9[(x^(7)tan x)a^(x)log_(e)a+a^(x){x^(7) (d)/(dx)tan x+tan x (d)/(dx)x^(7)}]`
`=9[(x^(7)tan x)a^(x)log_(e)a+a^(x){x^(7)sec^(2)x+7x^(6)tan x}]`
`=9a^(x)[x^7tan x log _(e) a+x^(7)sec^2x+7x^(6)tan x]`
`=9a^(x)x^(6)[x (tan xlog_(e)a+sec^(2)x)+7tan x]`


Discussion

No Comment Found