 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | A(6, 1), B(8, 2) and C(9, 4) are three vertices of parallelogram ABCD. If E is the mid-point of DC, then find the area of DeltaADE. | 
| Answer» Solution :Let the co-ordinates of point D be `(x_(4), y_(4))` Now, the mid-point of BD = mid-point of AC `rArr""((x_(4)+8)/(2), (y_(4)+2)/(2))=((6+9)/(2), (1+4)/(2))`   `rArr""(x_(4)+8)/(2)=(15)/(2)rArr""x_(4)=7` and `""(y_(4)+2)/(2)=(5)/(2)" "rArr""y_(4)=3` `therefore""D-= (7, 3)` Mid-point E of CD `-=((7+9)/(2), (3+4)/(2))-=(8, (7)/(2))` Now, AREA of`DeltaADE=(1)/(2)[6(3-(7)/(2))+7((7)/(2)-1)+8(1-3)]=(1)/(2)(-3+(35)/(2)-16)=-(3)/(4)` `therefore` Area of `DeltaADE=(3)/(4)` square units (neglecting negative sign) | |