

InterviewSolution
Saved Bookmarks
1. |
(a) Calculate the energy released by the fission of `2g` of `._(92)U^(235)` in `kWh`. Given that the energy released per fission is `200MeV`. (b) Assuming that `200MeV` of enrgy is released per fission of uranium atom, find the number of fissions per second required to released `1` kilowatt power. (c) Find the amount of energy produced in joules due to fission of `1g` of `._(92)U^(235)`assuming that `0.1%` of mass is transformed into enrgy.`._(92)U^(235) = 235 amu`, Avogadro number `= 6.023 xx 10^(23)` |
Answer» (a) Number of fissions `=` Number of atoms `= (m)/(M)N_(A) = (2)/(235) xx 6.023 xx 10^(23)` Total energy released `=(2)/(235) xx 6.023 xx 10^(23) xx 200 xx 10^(6) xx 1.6 xx10^(-19)J` `= 16.4 xx 10^(10) J` `= (16.4xx10^(10))/(3.6xx10^(6)) = 4.55 xx 10^(4)kWh` `(1kWh = 3.6 xx 10^(6)J)` (b) `E = 1kW = 10^(3) J//sec` Number of fissions/sec `= (10^(3))/(200xx1.6xx10^(13)) = 3.125xx10^(13)` (c) Mass used `m = (0.1)/(100) xx 1=10^(-3) g` Number of fissions `= (10^(-3))/(235) xx 6.023 xx 10^(23)` Enegry produced `= (6.023xx10^(20))/(235) xx 200 xx 1.6 xx 10^(-13)` `= 8.2 xx 10^(7) J` |
|