1.

`a in R` के लिए `a ne=1,` यदि `lim_(ntooo)(1^(a)+2^(a)+।।।+n^(a))/((n+1)^(a-1)[(na+1)+(na+2)+।।।+(na+n)])=1/60` तक a का मान ज्ञात कीजिए।

Answer» माना, `lim_(ntooo)(1^(a)+2^(a)+...+n^(a))/((n+1)^(a-1)[(na+1)+(na+2)+...+(na+n)])`
`=lim_(xtooo)(n^(a)[((1)/(n))^(a)+((2)/(n))^(a)+...((n)/(n))^(a)])/((n+1)^(a-1)[n^(2)a+(n(n+1))/(2)])`
`=lim_(xtooo)(n^(a)*n[1/n underset(r=1)overset(n)sum((r)/(a))^(a)])/((n+1)^(a-1). n(na+((n+1))/(2)))`
`=lim_(xtooo)(n^(a))/((n+a)^(a-1))*((1)/(a+1))/(na+(n+1)/(2))`
`=lim_(ntooo)(1)/((1+(1)/(n))^(a-1))*((1)/(a+1))/(a+(1)/(2)+(1)/(2n))`
`=(2)/((a+1)(2a+1))=1/60` (दिया है)
`implies(a+1)(2a+1)=120`
` impliesa=7, -17/2`


Discussion

No Comment Found