1.

`lim_(x to 0) ((1-cos x cos2x cos3x)/(sin ^(2)2x))` का मान ज्ञात कीजिए।

Answer» हम जानते है कि `cos x cos2x cos 3x=1/2(2 cos x cos3x cos2x)`
`=1/2[(cos 2x+cos 4x)cos2x]`
`=1/4[(2 cos ^(2)2x+2 cos 4x cos 2x)]`
`=1/4[1+cos 4x+cos 2x+cos 6x]`
इसलिए `underset(x to0)lim[(1-cos x cos2x cos 3x)/(sin^(2)2x)]=underset(xto0)lim[(1-(1)/(4)(1+cos 4x+cos 2x+cos 6x))/(sin^(2)2x)]`
`=underset(xto0)lim[(1-cos 2x+1-cos4x+1-cos 6x)/(4 sin^(2)2x)]`
`=underset(x to 0)lim(2 sin ^(2)x+2sin ^(2)2x+2sin^(2)3x)/(4sin^(2)2x)`
`=underset(x to 0)lim{(2((sin x)/(x))^(2)*x^(2)+2((sin 2x)/(2x))^(2)*4x^(2)+2((sin 3x)/(3x))^(2)*9x^(2))/(4((sin 2x)/(2x))*4x^(2))}`
`=(28)/(16)=7/4`


Discussion

No Comment Found