1.

A tree standing on horizontal plane is leaning towards east. At two points situated at distances a and b exactly due west on it, angles of elevation of the top are respectively `alpha` and `beta`. Prove that height of the top from the ground is `((b-a).tanalpha.tanbeta)/(tanalpha-tanbeta)`

Answer» We can draw a diagram with the given details.
Please refer to video for the diagram.
Here, height of top from the ground ` = OB = h`
`AC = a, AD = b, OB =x`
`/_OCB = alpha, /_ODB = beta`
`:.tan alpha = (OB)/(OC) `
`=> tan alpha = h/(x+a)`
`h = tan alpha(x+a)->(1)`
`tan beta = (OB)/(OD) `
`=> tan beta = h/(x+b)`
`=> tan beta(x+b) = h`
Putting value of `h` from (1),
`=>tan alpha (x+a) = tan beta(x+b)`
`=>x(tan alpha- tan beta) = btanbeta - atanalpha`
`=>x = ( btanbeta - atanalpha)/(tan alpha- tan beta)`
`:. h = tan alpha(( btanbeta - atanalpha)/(tan alpha- tan beta) +a)`
`=> h = tan alpha(( btanbeta - atanalpha+atanalpha-atanbeta)/(tan alpha- tan beta))`
`=> h =( (b-a)tan beta tanalpha)/(tan alpha- tan beta)`


Discussion

No Comment Found

Related InterviewSolutions