InterviewSolution
Saved Bookmarks
| 1. |
From the bottom of a pole of height h, the angle of elevation of the top of a tower is `alpha`. The pole subtends an angle `beta` at the top of the tower. find the height of the tower. |
|
Answer» 1)`tanalpha=4/x` `90-(90-alpha+beta)` `90-90+alpha-beta` 2)`tan(alpha-beta)=(4-h)/x` `tan(apha-beta)=(H-h)/(H/tanalpha)` `tan(alpha-beta)=(H-h)/Htanalpha` `h/H=1-tan(alpha-beta)/tanalpha` `h/H=(tanalpha-tan(alpha-beta))/tanalpha` `h/H=1-tan(alpha-beta)/tanalpha` `=1-sin(alpha-beta)/cos(alpha-beta)*cosalpha/sinalpha` `h/H=(sinalphacos(alpha-beta)-sin(alpha-beta)cosalpha)/(sinalphacos(alpha-beta)` `h/H=sinn(alpha-alpha+beta)/sinalphacos(alpha-beta)` `H=(hsinalphacos(alpha-beta))/sinbeta`. |
|