1.

∆ABC is an equilateral triangle. Point P is on base BC such that PC = 1/3 BC, if AB = 6 cm find AP.Given: ∆ABC is an equilateral triangle. PC = 1/3 BC, AB = 6cm. To find: AP Consttuction: Draw seg AD ± seg BC, B – D – C.

Answer»

∆ABC is an equilateral triangle. 

∴ AB = BC = AC = 6cm [Sides of an equilateral triangle] 

pc = 1/3 BC [Given]

= 1/3 (6) 

∴ PC = 2cm 

In ∆ADC, 

∠D = 90° [Construction] 

∠C = 60° [Angle of an equilateral triangle] 

∠DAC = 30° [Remaining angle of a triangle] 

∴ ∆ ADC is a 30° – 60° – 90° triangle.

∴ AD = √3/2 AC [Side opposite to 60°] 

∴ AD = √3/2  (6) 

∴ AD = 3√3 cm

∴ CD = 1/2 AC [Side opposite to 30°] 

∴ CD = 1/2 (6) 

∴ CD = 3cm 

Now DP + PC = CD [D – P – C] 

∴ DP + 2 = 3 

∴ DP = 1cm 

In ∆ADP, 

∠ADP = 900

AP2 = AD2 + DP2 [Pythagoras theorem] 

∴ AP2 = (3√3)2 + (1)2 

∴ AP2 = 9 × 3 + 1 = 27 + 1 

∴ AP2 = 28 

∴ AP = √28 

∴ AP = (√4 x 7)

∴ AP = 2√7 cm 



Discussion

No Comment Found