1.

In ∆ABC, seg AD ⊥ seg BC and DB = 3 CD. Prove that: 2AB2 = 2AC2 + BC2. Given: seg AD ⊥ seg BC DB = 3CD To prove: 2AB2 = 2AC2 + BC2

Answer»

DB = 3CD (i) [Given] 

In ∆ADB, ∠ADB = 90° [Given] 

∴ AB2 = AD2 + DB2 [Pythagoras theorem] 

∴ AB2 = AD2 + (3CD)2 [From (i)] 

∴ AB2 = AD2 + 9CD2 (ii) 

In ∆ADC, ∠ADC = 90° [Given] 

∴ AC2 = AD2 + CD2 [Pythagoras theorem] 

∴ AD2 = AC2 – CD2 (iii)

AB2 = AC2 – CD2 + 9CD2 [From (ii) and(iii)] 

∴ AB2 = AC2 + 8CD2 (iv) 

CD + DB = BC [C – D – B] 

∴ CD + 3CD = BC [From (i)] 

∴ 4CD = BC 

∴ CD = (BC/4) (v) 

AB2 = AC2 + 8( BC/4)2 [From (iv) and (v)] 

∴ AB2 = AC2 + 8 × BC2/16

∴ AB2 = AC2 + BC2/2

∴ 2AB2 = 2AC2 + BC2 [Multiplying both sides by 2]



Discussion

No Comment Found