InterviewSolution
 Saved Bookmarks
    				| 1. | 
                                    In ∆ABC, seg AD ⊥ seg BC and DB = 3 CD. Prove that: 2AB2 = 2AC2 + BC2. Given: seg AD ⊥ seg BC DB = 3CD To prove: 2AB2 = 2AC2 + BC2 | 
                            
| 
                                   
Answer»  DB = 3CD (i) [Given] In ∆ADB, ∠ADB = 90° [Given] ∴ AB2 = AD2 + DB2 [Pythagoras theorem] ∴ AB2 = AD2 + (3CD)2 [From (i)] ∴ AB2 = AD2 + 9CD2 (ii) In ∆ADC, ∠ADC = 90° [Given] ∴ AC2 = AD2 + CD2 [Pythagoras theorem] ∴ AD2 = AC2 – CD2 (iii) AB2 = AC2 – CD2 + 9CD2 [From (ii) and(iii)] ∴ AB2 = AC2 + 8CD2 (iv) CD + DB = BC [C – D – B] ∴ CD + 3CD = BC [From (i)] ∴ 4CD = BC ∴ CD = (BC/4) (v) AB2 = AC2 + 8( BC/4)2 [From (iv) and (v)] ∴ AB2 = AC2 + 8 × BC2/16 ∴ AB2 = AC2 + BC2/2 ∴ 2AB2 = 2AC2 + BC2 [Multiplying both sides by 2]  | 
                            |