1.

In the adjoining figure, ∠DFE = 90°, FG ⊥ ED. If GD = 8, FG = 12, find i. EG ii. FD, and iii. EF

Answer»

i. In ∆DEF, ∠DFE = 90° and FG ⊥ ED [Given]

∴ FG2 = GD × EG [Theorem of geometric mean]

∴ 122 = 8 × EG.

∴ EG = \(\frac{144}{8}\)

∴ EG = 18 units

ii. In ∆FGD, ∠FGD = 90° [Given]

∴ FD2 = FG2 + GD2 [Pythagoras theorem]

= 122 + 82 = 144 + 64 

= 208

∴ FD \(=\sqrt{208}\) [Taking square root of both sides]

∴ FD \(=4\sqrt{13}\) units

iii. In ∆EGF, ∠EGF = 90° [Given] 

∴ EF2 = EG2 + FG2 [Pythagoras theorem] 

= 182 + 122 = 324 + 144

= 468

∴ EF \(=\sqrt{468}\) [Taking square root of both sides]

∴ EF \(=6\sqrt{13}\) units.



Discussion

No Comment Found