InterviewSolution
 Saved Bookmarks
    				| 1. | 
                                    In the adjoining figure, ∠DFE = 90°, FG ⊥ ED. If GD = 8, FG = 12, find i. EG ii. FD, and iii. EF | 
                            
| 
                                   
Answer»  i. In ∆DEF, ∠DFE = 90° and FG ⊥ ED [Given] ∴ FG2 = GD × EG [Theorem of geometric mean] ∴ 122 = 8 × EG. ∴ EG = \(\frac{144}{8}\) ∴ EG = 18 units ii. In ∆FGD, ∠FGD = 90° [Given] ∴ FD2 = FG2 + GD2 [Pythagoras theorem] = 122 + 82 = 144 + 64 = 208 ∴ FD \(=\sqrt{208}\) [Taking square root of both sides] ∴ FD \(=4\sqrt{13}\) units iii. In ∆EGF, ∠EGF = 90° [Given] ∴ EF2 = EG2 + FG2 [Pythagoras theorem] = 182 + 122 = 324 + 144 = 468 ∴ EF \(=\sqrt{468}\) [Taking square root of both sides] ∴ EF \(=6\sqrt{13}\) units.  | 
                            |