InterviewSolution
Saved Bookmarks
| 1. |
AP of the 15 the sum of the first 10 terms is 210 the sum of the last 15 terms is 2565 find the AP |
| Answer» Let a be the first term and d be the common difference of the given AP. Therefore, the sum of first n terms is given by{tex}S _ { n } = \\frac { n } { 2 } \\cdot \\{ 2 a + ( n - 1 ) d \\}{/tex}{tex}\\therefore{/tex}\xa0S10 = {tex}\\frac{{10}}{2}{/tex}{tex}\\cdot{/tex}(2a+9d) {tex}\\Rightarrow{/tex}5(2a+9d)=210{tex}\\Rightarrow{/tex}2a+9d=42. ...(i)Sum of last 15 terms = (S50 - S35).{tex}\\therefore{/tex}\xa0(S50\xa0- S35) = 2565{tex}\\Rightarrow{/tex}\xa0{tex}\\frac{{50}}{2}{/tex}(2a+49d)- {tex}\\frac{{35}}{2}{/tex}(2a+34d)=2565{tex}\\Rightarrow{/tex}\xa025(2a+49d)-35(a+17d)=2565{tex}\\Rightarrow{/tex}\xa0(50a-35a)+(1225d-595d)=2565{tex}\\Rightarrow{/tex}\xa015a+630d = 2565 {tex}\\Rightarrow{/tex}\xa0a + 42d = 171 ...... (ii)Therefore, on solving (i) and (ii), we get a=3 and d=4.Hence, the required AP is 3,7,11,15,19..... | |