

InterviewSolution
Saved Bookmarks
1. |
Consider an `alpha-` particle just in contact with a `._(92)U^(238)` nucleus. Calculate the coulombic repulsion energy (i.e., the height of the coulombic barrier between `U^(238)` and alpha particle) assuming that the distance between them is equal to the sum of their radiiA. `23.851 xx 10^(4) eV`B. `26.147738 xx 10^(4) eV`C. `25.3522 xx 10^(4) eV`D. `20.2254 xx 10^(4) eV` |
Answer» Correct Answer - B `r_("nucleus") = 1.3 xx 10^(-13) xx (A)^(1//3)`, where A is mass number `r_(U^(238)) = 1.3 xx 10^(-13) xx (238)^(1//8) = 8.06 xx 10^(-13) cm` `r_(He^(4)) = 1.3 xx 10^(-13) xx (4)^(1//3) = 2.06 xx 10^(-13) cm` `:.` Total distance in between uranium and `alpha` nuclei `= 8.06 xx 10^(-13) + 2.06 xx 10^(-13) = 10.12 xx 10^(-13) cm` Now repulsion energy `= (Q_(1)Q_(2))/(r) = (92 xx 4.8 xx 10^(-10) xx 2 xx 4.8 xx 10^(-10))/(10.12 xx 10^(-13)) erg` `= 418.9 xx 10^(-7) erg = 418.9 xx 10^(-7) xx 6.242 xx 10^(11) eV` `= 26.147738 xx 10^(4) eV` |
|