1.

Consider the following statements in respect of a square matrix A and its transpose AT :1. A + AT is always symmetric.2. A - AT is always anti-symmetric.Which of the statements given above is / are correct?1. 1 only2. 2 only3. Both 1 and 24. Neither 1 nor 2

Answer» Correct Answer - Option 3 : Both 1 and 2

Concept:

Symmetric matrix is a square matrix that is equal to its transpose.

i.e. A = AT.

skew-symmetric (or antisymmetric or antimetric) matrix is a square matrix whose transpose equals its negative.

i.e.  AT = - A

(A + B)= (A)T  + (B)

(AT) = A

Calculations:

Given, A is any square matrix and AT is transpose matrix A

Consider the statement "A + AT is always symmetric."

We know that "symmetric matrix is a square matrix that is equal to its transpose."

i.e. A = AT.

Consider, the matrix A + AT ....(1)

Taking transpose of the matrix A + AT 

(A + AT)= (A)T  + (AT)

⇒(A + AT)T = (A)T + A

⇒(A + AT)T = A + (A)T 

⇒ A + AT is symmetric.

Hence, the statement "A + AT is always symmetric is true.

 

Consider the statement "A - AT is always anti-symmetric" 

skew-symmetric (or antisymmetric or antimetric) matrix is a square matrix whose transpose equals its negative.

i.e.  AT = - A

Consider, the matrix A - AT ....(1)

Taking transpose of the matrix A - AT 

(A - AT)= (A)T  - (AT)

⇒(A - AT)T = (A)T - A

⇒(A - AT)T = - (A - AT)

⇒ A - AT is symmetric.

Hence, the statement "A - AT is always symmetric is true.

Hence, the following statements in respect of a square matrix A and its transpose AT :

1. A + AT is always symmetric.

2. A - AT is always anti-symmetric.

both are correct



Discussion

No Comment Found

Related InterviewSolutions