InterviewSolution
Saved Bookmarks
| 1. |
Find the value of k for A2 - kA - 14I = 0, if A = \(\begin{bmatrix} 2& 5 \\ 4 & 3 \end{bmatrix}\)1. -52. 53. 34. -3 |
|
Answer» Correct Answer - Option 2 : 5
Calculation: A2 = A × A ⇒ A2 = \(\begin{bmatrix} 2& 5 \\ 4 & 3 \end{bmatrix}\) × \(\begin{bmatrix} 2& 5 \\ 4 & 3 \end{bmatrix}\) ⇒ A2 = \(\begin{bmatrix} 24& 25 \\ 20 & 29 \end{bmatrix}\) Given A satisfy the equation A2 - kA - 14I = 0 ⇒ \(\begin{bmatrix} 24& 25 \\ 20 & 29 \end{bmatrix}\) - k \(\begin{bmatrix} 2& 5 \\ 4 & 3 \end{bmatrix}\) - 14 \(\begin{bmatrix} 1& 0 \\ 0 & 1 \end{bmatrix}\) = \(\begin{bmatrix} 0& 0 \\ 0 & 0 \end{bmatrix}\) ⇒ \(\begin{bmatrix} 24-2k-14&25-5k\\20-4k&29-3k-14\end{bmatrix}\) = \(\begin{bmatrix} 0& 0 \\ 0 & 0 \end{bmatrix}\) ⇒ 25 - 5k = 0 ⇒ k = 5 |
|