1.

Let \(\Delta = \begin{vmatrix} Ax & x^2 & 1 \\\ By & y^2 & 1 \\\ Cz & z^2 & 1 \end{vmatrix}\) and \(\Delta_1 = \begin{vmatrix} A & B & C \\\ x & y & z \\\ zy & zx & xy \end{vmatrix}\), then1. Δ1 = -Δ 2. Δ1 ≠ Δ3. Δ1 - Δ = 04. Δ1 = Δ = 0

Answer» Correct Answer - Option 3 : Δ1 - Δ = 0

Explanation:

\(Δ = \begin{vmatrix} Ax & x^2 & 1 \\\ By & y^2 & 1 \\\ Cz & z^2 & 1 \end{vmatrix}\)  and  \(Δ_1 = \begin{vmatrix} A & B & C \\\ x & y & z \\\ zy & zx & xy \end{vmatrix}\)

Calculating the determinant of Δ1 :

\(Δ_1 = \begin{vmatrix} A & B & C \\\ x & y & z \\\ zy & zx & xy \end{vmatrix}\)

Δ1 = A × (x × y2 - x × z2) - B × (x2 × y - z2 × y) + C × (x2 × z - y2 × z)

     = A × x (y2 - z2) - B × y (x2 - z2) + C × z (x2 - y2).............(1)

Calculating the determinant of Δ about first column:

\(Δ = \begin{vmatrix} Ax & x^2 & 1 \\\ By & y^2 & 1 \\\ Cz & z^2 & 1 \end{vmatrix}\)

Δ = A × x (y2 - z2) - B × y (x2 - z2) + C × z (x2 - y2)............(2)

If we subtract (1) and (2) 

Δ1 - Δ = 0

Hence option 3 is the correct answer.



Discussion

No Comment Found

Related InterviewSolutions